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1. Brief Introduction

Biology has made significant progress unraveling the complexity of life and
its constituents. By studying phenotypical differences due to interventions and
diseases, biology aims to infer causal relationships between various interacting
components at a large scale. Classical biochemistry relied mostly on isolating
parts of the system from the whole and studying the chemistry of the individual
components. The field of genetics dealt with the structure and function of genes.
Over time, these fields produced a large body of knowledge, from sequencing
the entire genome and unraveling enzyme kinetics, to identifying the various
molecules and pathways that play a role in biological systems. Nevertheless, it
has also become increasingly apparent that for many diseases and syndromes a
clear chain of causation is absent and that the large scale behavior emerges from
the interactions between the different components (genes, proteins and small
molecules). With the rise of molecular biology, the search for the mechanistic
laws that drive these systems has been taken to the molecular level. Merely
studying the individual components does not suffice and investigation of the
interplay between the various modules of such systems is essential for under-
standing their emergent properties and behavior [1, 2].

This is where systems biology (also known as integrative biology) comes
into the picture. Systems biology is a scientific discipline and paradigm where
the central theme is integration. Its main focus is the study of how emergent
properties arise from the sum of their parts. This is a daunting task which re-
quires integration in terms of system components, time scales as well as dif-
ferent data sources. Integrative approaches involve studying the system as a
whole, while quantitatively observing multiple system components simultane-
ously. Subsequently, methods from computational biology, control theory and
bio-informatics are applied to perform data integration and construct testable
hypotheses. Though the aim of biology and biochemistry has always been to
understand the mechanisms underlying biological processes and pathways, it is
due to recent advances in computational abilities and measurement technologies
that the systems biology approach becomes feasible for increasingly complex sys-
tems.

In many cases, it is possible to formulate conceptual understanding in the
form of mathematical models. This process forces the investigator to concretely
formalize the mechanisms that play a role in the system. This endeavor requires
information on how the different model components are connected as well as
knowledge on the kinetic behavior of the molecular species involved. Subse-
quently, these models can be implemented in computer software to be simulated
and put to the test quantitatively. Tools from systems analysis and applied statis-
tics can be used to predict behavior and formulate biological hypotheses in a
quantifiable and testable manner. Any computer model is a simplification of re-
ality, which manifests itself as some features being over-expressed, while others
are absent. In this way, computer models provide caricatures of reality that aid
in understanding the phenomena they were developed to describe. By repeat-
edly challenging such models with new informative data, our understanding
can iteratively be improved. The ambition is that over time, such models become
increasingly predictive and explanatory for the phenomena they were designed
to describe, thereby providing answers to some of the difficult questions in the
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life sciences. Which aspects of the real system should (or can) be incorporated
in the model depends on the aims of the modeling endeavor and the availability
of measurement data. The development of mathematical models and the gen-
eration of new data should therefore not be seen as two separate entities but a
tightly interwoven process.

Dynamical models

Dynamical models are a way to describe the time evolution of a system by con-
sidering the time dependence of its state. Such models consist of state variables
(or states), which are quantities that change over time and parameters (which are
fixed with respect to time). These are then embedded in a system of equations
which relate the different states of the model to time. To simulate the model
and make predictions, model parameter values are required. Obtaining (or es-
timating) these parameter values constitutes a major challenge in the develop-
ment of computational models. Measurements are typically used by simulating
the experiments performed in the lab and calibrating the observable model out-
puts to their measured counterparts by adjusting model parameters. Initially, a
model can be too simple and merely estimating the parameters does not achieve
a sufficient agreement with the experimentally acquired data. When this occurs
changes in the model are required. The iterative cycle of experimentation and
model refinement often leads to relatively complex models with many parame-
ters.

Though the molecular bio-sciences have made great advances in providing
access to the various components of the system, not all states are accessible and
not all data is equally suitable for dynamical modeling. Since several measure-
ment technologies employed in the molecular bio-sciences are of a qualitative
or semi-quantitative nature, one is often forced to incorporate ratios of molec-
ular species rather than absolute quantities or adding unknown experimental
scaling factors to the model parameters. Additionally, biological variability and
noise result in large experimental variabilities for those components that are ac-
tually measured. These experimental limitations raise doubts on how reliably
parameter values can be inferred for models of increasing complexity. In prac-
tical situations, this lack of data often results in several poorly constrained and
therefore uncertain model parameters and predictions [3–7]. This makes devis-
ing a mechanistic dynamical model a difficult and often iterative task. Whereas
the larger models are plagued by large uncertainties, lumped approximations are
not always considered as useful for unraveling mechanistic detail as the original
(albeit uncertain) model. No consensus has been reached on the scope and level
of mechanistic detail on which inference can still reliably be performed. Being
able to assess, report and effectively reduce both parameter and prediction un-
certainties is crucial for the future of model development in systems biology.

Metabolic Syndrome

Metabolic syndrome is a combination of whole-body symptoms associated with
overweight individuals at an increased morbidity risk. The actual mechanisms
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1. Brief Introduction

behind metabolic syndrome are still poorly understood. Unraveling long-term
adaptations in the underlying biochemical network is complicated by the multi-
level aspects of the system and the time-scale on which the syndrome develops.
One long-term goal is to unravel the changes taking place in the system by in-
tegrating various sources of data and mathematical modeling. Considering the
complexity of the system and the ethical and financial cost of performing mea-
surements, it is important that prediction uncertainties are identified, quantified
and reduced as efficiently as possible. Classical methodologies are typically only
suited to either work well on small models or in the limit of large amounts of
data. Within this project, neither of these situations apply. Hence, there is a
need to identify methodologies that perform well on non-linear models asso-
ciated with large uncertainties. One of the requirements of the methodologies
presented in this thesis is that they are applicable in practice and perform well
on models of representative complexity.

The aim of this dissertation is to provide tools and strategies for performing uncertainty
analysis and assess their applicability to computational models of biochemical pathways.
Secondly, to provide methods for selecting experiments which reduce uncertainties in an
optimal manner. Finally, to apply the developed methodologies to some relevant cases.

This work is divided into the following chapters:

Chapter 2 - Parameter Uncertainty in Biochemical Models

This chapter provides a brief introduction to parameter uncertainty analysis for
dynamic models described by ordinary differential equations. The suitability of
different techniques for addressing uncertainty in such models is discussed. Ad-
ditionally, some state-of-the-art methods for uncertainty analysis are introduced.

Chapter 3 - A Strategy for Prediction Uncertainty Analysis

Here, a strategy for prediction uncertainty analysis is presented. The approach
integrates Profile Likelihood analysis with Bayesian sampling and involves per-
forming different analyses sequentially to detect and avoid problems associated
with the individual techniques. The result is a sample from the posterior pre-
dictive distribution, which forms the basis for Chapters 4 and 5. Finally, the
methodology is illustrated on a model of the JAK-STAT signaling pathway.

Chapter 4 - A Bayesian Approach to Experimental Design

The uncertainties of different model predictions are often related. Here, we
present a method to select experiments that will reduce the uncertainty of
specific predictions in an optimal manner. By applying importance sampling to
the posterior predictive distribution, the efficacy of a new measurement is
predicted. Because predictive distributions can be computed for a wide range of
quantities, this approach is very flexible. The combinatorial effect of designing
multiple experiments simultaneously can also be probed.
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Chapter 5 - Optimal Experimental Design for Model Selection

Because of the limited experimental accessibility of the system, different hy-
potheses on how a biochemical pathway operates typically exist. Differences
between these hypotheses can exist both in the kinetic equations as well as the
model topologies. In some cases, certain models clearly outperform others in
terms of providing a good description of the data. When this is not the case,
more experiments are required. This chapter describes a method which can be
used to determine which predictions should be measured to effectively discrim-
inate between various models.

Chapter 6 - Computational Modeling of Diacylglycerol Transferase

Excessive accumulation of triglycerides (TG) or hypertriglyceridemia is one of
the symptoms of Metabolic Syndrome and has been implicated as an important
risk factor for various diseases. Production of TG occurs via two major path-
ways which converge into a final reaction where fatty acids (FA) and diacyl-
glycerol (DAG) are bound into TG. Diacylglycerol acyltransferases (DGAT) are
membrane bound enzymes which are primarily responsible for catalyzing this
acylation of DAG. The first steps towards a computational model of the DGAT
system are presented. Based on literature, a network topology is proposed and
subsequently used to formulate a mathematical model. Though certain obser-
vations seemed contradictory at first, the model consolidates multiple datasets
revealing that they are not inherently inconsistent. Lack of flux measurements at
the system boundaries turned out to be detrimental for the predictive power of
the model.

Chapter 7 - Optimal Experimental Design for Identifying Progressive Adapta-
tions

This chapter describes a generally applicable method for designing experiments
in order to improve predictions of progressive changes in biological systems. The
proposed method captures the modulating effects on the metabolic level using
time-dependent descriptions (or trajectories) of the model parameters, which is
useful when mechanistic interactions are unknown. Subsequently, these parame-
ter trajectories are used to obtain predictions for experiment design. Additionally
a bias correction for the methodology presented in Chapter 4 is introduced for
cases where the effective sample size is too low.
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2. Parameter Uncertainty in Biochemical Models

Abstract

Improved mechanistic understanding of biochemical networks is one of the driv-
ing ambitions of Systems Biology. Computational modeling allows the inte-
gration of various sources of experimental data in order to put our conceptual
understanding to the test in a quantitative manner. The aim of computational
modeling is to obtain both predictive as well as explanatory models for complex
phenomena, hereby providing useful approximations of reality with varying lev-
els of detail. As the complexity required to model different systems increases, so
does the need to determine with what accuracy model predictions can be made.
Despite efforts to make tools for uncertainty analysis available to the field, these
methods have not yet found widespread use in the field of Systems Biology. Ad-
ditionally, the suitability of the different methods strongly depends on the prob-
lem and system under investigation. This chapter provides both an overview as
well as a friendly introduction to parameter uncertainty analysis. A selection of
techniques, including state-of-the-art methods for uncertainty analysis, will be
discussed.
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2.1 Introduction

2.1 Introduction

In the past decades, molecular biology has unraveled various pathways that
play a role in biological phenomena. Many of the components and interactions
involved have been identified by employing a reductionist approach, isolating
parts of the system from the whole. Gradually, a complex network of various in-
teracting subsystems is being revealed. Investigation of the interactions between
various components of a system is essential for understanding its emergent be-
havior. Consequently, there has been a shift in paradigm from reductionism to
integration [1–4]. By formalizing hypotheses on how a pathway operates in the
form of computational models our conceptual understanding can be put to the
test quantitatively [5–7]. By repeatedly challenging such models with new data,
it is possible to iteratively obtain models that are decreasingly wrong. The aim
of Systems Biology is to obtain both predictive as well as explanatory models for
complex phenomena, hereby providing useful approximations of reality. This
chapter focuses on dynamical models which consist of state variables, which are
quantities that change over time, and parameters (fixed with respect to time).
These state variables are embedded in a system of equations which relate the
different state variables in the model.

To simulate the model and make predictions, parameter values are required.
These typically have to be estimated from data. Due to the fact that data is mea-
sured with finite accuracy and only a subset of the state variables is accessible
experimentally, uncertainty analysis is a highly relevant topic. Despite efforts to
make tools for uncertainty analysis available [8–11] these methods have not yet
found widespread use in the field. Nevertheless, some examples of successful ap-
plications in computational biology are listed in Table 2.1. This chapter provides
an introduction to some of the techniques available as well as give an overview
of the state-of-the-art methods for parameter uncertainty analysis [12–17]. Which
methods are applicable to a specific problem strongly depends on the system un-
der investigation and the assumptions one is willing to make. The suitability
of different techniques for addressing uncertainty in computational modeling of
dynamical systems is discussed.

Name Requirements Result Papers

Sensitivity
Analysis

None Assessment of (local) sensitivity [18–21]

Profile
Likelihood

Likelihood function Assessment of identifiability [7, 22]

Bootstrap None Distribution of parameters
based on simulated replicates

[15,23,24]

Markov Chain
Monte Carlo

Weak identifiability Posterior distribution [25–29]

Sequential
Monte Carlo

Proper priors for all
parameters

(Approximate) posterior
distribution

[30–32]

Table 2.1: A list of the methods discussed in this paper and some relevant applications in
the field of Systems Biology
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2. Parameter Uncertainty in Biochemical Models

2.2 Computational modeling of biochemical systems

The use of dynamical models has a long history within several disciplines of
science. In the realm of classical physics, models often comprise of physical laws
with well established and invariant physical constants acting as parameters. In
engineering, parameters are often application specific, but the individual com-
ponents are usually well characterized and their interactions known. In com-
putational biology, the challenges are different from those in many other fields.
Though methods for discovering interactions are well established [33–35], tech-
niques for accurately determining biochemical parameters remain limited [12].
Moreover, relying on measurements that were performed in vitro can lead to in-
consistencies [36] due to differences in the biochemical environment and regu-
latory mechanisms that were not accounted for [16]. Despite the wealth of in-
formation that kinetic assays provide, such issues require attention and warrant
future research. Since such measurements are both expensive as well as time con-
suming, the amount of data is often relatively scarce. Considering that models
are required to have a certain level of complexity to describe biological pathways,
this leads to large uncertainties in the inferred values of these biochemical param-
eters. Consequently, the investigator is faced with several poorly constrained and
therefore uncertain model predictions [10,24,37–39]. To deal with such uncertain-
ties and to ascertain their implications on scientific conclusions, several methods
have been developed. Some of these are useful for probing model properties,
others for designing informative experiments.

2.3 Parameter estimation

The scope of this chapter is restricted to dynamical systems that can be
described by ordinary differential equations (ODEs). Such a description is
appropriate when the number of particles involved in the biochemical network
is large enough to be able to consider concentrations and when spatial effects
are negligible [40–45]. Typically, such models take the following form:

~̇x(t) = N~f (~x(t),~u(t),~p)

~y(t) = ~g(~x(t),~q)

~yobs(t) = ~g(~x(t),~q) +~ξ(t)

~x(0) =~h(~r)

(2.1)

Here N represents the reaction stoichiometry of the system or the quantitative
relationships among substances as they participate in chemical reactions. Vector
~f is a vector of flux expressions and ~g is a vector of equations which map the in-
ternal state variables to an output. These equations contain parameters ~p (which
are fixed constants with respect to time), inputs ~u(t) which depend on time, and
state variables ~x(t). Given a set of parameters, inputs and initial conditions ~x(0),
these equations can subsequently be simulated, and time courses of the model
state variables can be obtained. Such systems are typically partially observed,
which means that measurements ~yobs(t) can only be performed on a subset or a
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2.3 Parameter estimation

combination of the total number of state variables N in the model. Additionally,

these measurements are hampered by measurement noise ~ξ and many of the
employed techniques necessitate the use of scaling and offset parameters ~q [46].

For ease of notation, ~θ is defined as ~θ = {~p,~q,~r}, which lists all the parameters
that should be defined in order to simulate the model. After the model is postu-
lated and data is acquired, parameter estimation can be performed. To do this,
consider the probability density of observing data y consisting of data points yij

given parameter values~θ. For the sake of notation, we assume independent addi-
tive Gaussian noise with constant variance for each measurement, which results
in a probability density function defined as:

p(y|~θ) =
M

∏
i=1

Ni

∏
j=1

p(yij,~θ)

=

(

M

∏
i=1

(√
2πσi

)Ni

)−1

exp



−
M

∑
i=1

Ni

∑
j=1

(

yij − yi(tj,~θ)√
2σi

)2




(2.2)

Here p refers to a probability density. It is at this point where the so-called
frequentist and Bayesian methodologies begin to diverge. The former opts for a
purely data-based approach, aiming to find all the parameter sets which describe
the observed data yD to an acceptable degree. What is considered acceptable is

evaluated by means of the likelihood function L(~θ), whose right hand side is the
same as (2.2). Although the likelihood function is a function of the parameters, it
should not be confused with a parameter probability density as it makes no prob-
abilistic assessment of the parameter values. The threshold Llim for determining

whether a parameter set is acceptable L(~θ) > Llim, is typically determined by
choosing a significance level and computing the associated critical values of the
uncertainty distribution associated with the noise on the data.

The Bayesian approach treats the parameters as random variables and uses
Bayes’ theorem (2.3) to perform inference probabilistically (2.4) [25, 47].

P(A|B) = P(B|A)P(A)

P(B)
(2.3)

p(~θ|yD) =
p(yD|~θ)p(~θ)

p(yD)
=

p(yD|~θ)p(~θ)
∫

Ω
p(yD|~θ)p(~θ)d~θ

(2.4)

Here, the probability density of the parameter values is given by p(~θ|yD)

which can be computed from the probability density of the data p(yD|~θ) given

parameters ~θ, the prior probability density of the parameters p(~θ) and the
marginal likelihood or model evidence p(yD). Since the marginal likelihood
does not depend on the parameters, this merely acts as a normalizing constant.

Priors for the parameters are specified in the form of probability densities and
are defined with respect to a specific parameterization of the model. They usually
represent either current belief [48] or attempt to be non-informative. The latter is
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2. Parameter Uncertainty in Biochemical Models

usually accomplished either by choosing wide priors (such as gamma priors for
parameters with only positive support [39]) or priors that exhibit invariance to
parameter transformations [49]. In brief, the aim is to sample from the posterior
parameter probability density and determine bounds enclosing (100− α)% of the
probability density.

In the frequentist paradigm, one usually proceeds by maximizing the like-

lihood function L(~θ) (Maximum Likelihood Estimation or MLE). The result of
maximizing the likelihood is finding those parameters for which the probabil-
ity density of obtaining the observed data is maximal. In practice, one often
minimizes the negative log-likelihood as it allows for efficient optimization algo-
rithms due to its quadratic nature. This is permitted since the logarithm does not
change the location of the optimum with respect to the parameters. When the
data variances are known, the normalization constant is independent of the pa-
rameters and minimizing the Residual Sum of Squares (RSS) becomes equivalent
to maximizing the likelihood (2.5):

χ2(~θ) =
M

∑
i=1

Ni

∑
j=1





yD
ij − yi(tj,~θ)

σi





2

(2.5)

When the variances σi have to be estimated from the data however, they
should preferably be treated as additional parameters. Since σi appears in the
normalizing constant of the additive noise distribution, such an approach leads
to an additional term in the negative log likelihood resulting in:

− ln
(

L(~θ)
)

=
1

2

(

χ2(~θ) +
M

∑
i=1

Ni ln
(

2πσ2
i

)

)

(2.6)

When additional information regarding the parameters is available, one can
include a prior distribution on the parameters and perform estimation based on
the combined quantity. Maximizing this quantity results in the Maximum A Pos-
teriori (MAP) estimator, which can be interpreted as a regularized form of MLE.

Determining which parameters maximize these quantities is a non-trivial
problem due to the existence of locally optimal solutions, large discrepancies in
the ranges of the different parameter values and various ridges present in these
likelihood surfaces [13, 37, 38]. Estimation is commonly performed using an
optimization algorithm. These can roughly be categorized into two classes:
probabilistic methods, which propose and accept or reject steps in parameter
space in a probabilistic manner, and deterministic methods. Whereas the
stochastic methods usually take longer to converge, they run a smaller risk of
converging to a local sub-optimal minimum [50, 51]. In the deterministic case,
this is usually approached by starting the deterministic optimizer using widely
dispersed starting values [16]. Note that both come in forms which either
incorporate information about the local geometry or not and that including such
information usually leads to faster convergence [11, 51]. Once an optimal
parameter set is obtained, the residuals, or weighted errors can be inspected for
any residual trend or autocorrelation to see whether the model describes the
data to an acceptable degree [15].
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2.4 Parameter uncertainty

2.4 Parameter uncertainty

Once the model describes the data, it is possible to proceed to the next ques-
tion: with how much certainty can predictions be made? And what should be
measured in order to put the model to the test? This section will briefly discuss
different approaches for assessing parameter uncertainty. We will briefly dis-
cuss the topic of sensitivity and identifiability before introducing frequentist and
Bayesian sampling based methods for uncertainty quantification.

2.4.1 Sensitivity

Common practice in the field of systems biology is to perform some sort of sensi-
tivity analysis during this step, either by performing a local parameter sensitivity
analysis (LPSA) or by varying multiple parameters simultaneously (global pa-
rameter sensitivity analysis, GPSA). The first technique is performed by perturb-
ing one parameter at a time and comparing the simulation result to a reference
output (2.7) [5]:

SM
θi

=
M(θi + ∆θi)− M(θi)

M(θi)

θi

∆θi
(2.7)

Here M refers to some prediction of interest, which is based on model sim-
ulations obtained with parameter value θi. Despite being intuitive, results from
such an analysis should be considered with care since different reference param-
eters can lead to different sensitivities [52,53]. To mitigate this issue, it is sensible
to compute a weighted average of local sensitivities based on the probability of
the chosen parameter values when the true parameters are highly uncertain [54].
Though informative, what this methodology provides is not an assessment of the
prediction uncertainty, but rather an assessment of the consequences a parameter
perturbation would have on specific predictions of interest.

The second class of techniques, the so-called Global Parameter Sensitivity
Analyses [52, 55, 56] are meant to circumvent the issue of only perturbing one
parameter at a time. Here large regions of parameter space are sampled and
used to compute model sensitivities. One specific method for GPSA, known as
Monte Carlo Filtering classifies simulations corresponding to the sampled pa-
rameter sets in two classes. Subsequently, the samples are sorted according to
each parameter independently and cumulative distributions of both classifica-
tions are computed. The supremum of the difference between these distributions
(Kolmogorov-Smirnov distance) now serves as a metric indicating how strongly
the classification correlates to that specific parameter, i.e., how sensitive the quan-
tity the filter is based on is to the uncertainty in that specific parameter (see Figure
2.1). In this sense, the name sensitivity analysis might be a bit of a misnomer and
uncertainty analysis might be a preferable term. The uncertainty distributions
used when performing this sampling are crucial for the answer that one obtains.
If the data implies that specific model parameters have to be correlated, it is im-
portant to incorporate these relations when performing the sampling.
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Figure 2.1: Graphical illustration of the Global Sensitivity Analysis based on Monte Carlo
Filtering. Top right: Output quantity shown for various combinations of parameters.
Lower left: Classification of the sampled parameter sets. The different classes are indi-
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functions of the two classes (solid lines) with the KS distance between the two (dashed
lines). Note how the parameter responsible for the largest difference in the output quan-
tity results in the largest KS distance.
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2.4 Parameter uncertainty

2.4.2 Asymptotics

Although sensitivity analyses are a useful tool for analyzing the consequences of
specific uncertainties, they give little information regarding how well these pa-
rameters can be estimated. If the model is identifiable and certain regularity con-
ditions are met (see [57] for specifics), the MLE distribution tends to a Gaussian
distribution for large amounts of data. The covariance matrix of this parameter
estimate can be obtained as C = H−1, where H refers to the Fisher Information
Matrix (FIM) which is given by the negative Hessian of the log-likelihood. Cal-
culating the true Hessian is costly and numerically challenging, which is why an
approximation based on the first order model sensitivities is often used:

Hkl =
δ2 ln L(~θ)

δθkδθl

=
M

∑
i=1

Ni

∑
j=1

(

1

2σ2
ij

(

(

yD
ij − yi(tj,~θ)

) δ2yi(tj,~θ)

δθkδθl
−

δyi(tj,~θ)

δθl

δyi(tj,~θ)

δθk

))

≈−
M

∑
i=1

Ni

∑
j=1

(

1

2σ2
ij

(

δyi(tj,~θ)

δθl

δyi(tj,~θ)

δθk

))

(2.8)

This approximation is reasonable when the residuals are sufficiently small.
Depending on the model, these first order sensitivities can either be computed
by solving the sensitivity equations (preferred) [12, 58], or by means of finite dif-
ferences (for which strict solver tolerances are required to ensure reliable deriva-
tives). Approximate parameter confidence intervals can subsequently be deter-
mined using Student’s t-distribution [59]:

θ±i = θi ± t1−α/2,d f

√

cov(~θ)ii (2.9)

Here t refers to Student’s t-distribution with d f , the degrees of freedom given
by d f = Ntotal − Npars + Nbounds. In this equation, Ntotal , refers to the number of
data points, Npars, to the number of parameters, and, when parameter bounds
are enforced, Nbounds, to the number of boundary constraints that the current
estimate satisfies.

2.4.3 Identifiability

Basing conclusions on a single best fit parameter set (and its asymptotic confi-
dence bounds) can be unreliable. Therefore, it is important to assess model be-
havior for all parameter values that correspond to simulations consistent with the
data (and optionally prior knowledge). One concept that plays an important role
here is parameter identifiability. An identifiable model is characterized by finite
confidence intervals. Non-identifiability can roughly be divided in two classes.
Structural non-identifiability, is a property of the model and observation equations
and occurs when the consequences of a change in parameters can either not be
observed from the measurements or when parameters are functionally related.
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2. Parameter Uncertainty in Biochemical Models

Several methods exist for detecting such non-identifiabilities [60, 61] and gener-
ally involve working with either Taylor expansions, generating series or assess-
ments of the rank of the sensitivity matrix. For a review on these techniques
see [61]. The second issue is practical non-identifiability, which results from lack of
information in the data and manifests itself as a flattening out of the likelihood in
a certain direction [10, 62]. In a Bayesian setting, choosing a sufficiently informa-
tive prior can prevent this flatness from propagating to the posterior parameter
probability distribution.

2.4.4 Profile likelihood

Although attractive because of their low computational cost, asymptotic confi-
dence intervals are often not appropriate. In many cases, identifiability is ques-
tionable and there is insufficient data to consider the asymptotic case. Parameters
in likelihood functions can be related in a non-linear fashion and multiple optima
may exist. In such cases, more reliable confidence intervals can be obtained using
the Profile Likelihood method [37]. This method works by systematically tracing
an optimal path over the likelihood, or, in the case of MAP estimation, the prob-
ability density function. Every profile is initiated at the best fit parameters, after
which one parameter i is selected to be profiled. This parameter is subsequently
changed, after which all the unchanged parameters are re-optimized. This pro-
cess is subsequently repeated until the fit becomes unacceptably bad or some
other criterion is met. In the Profile Likelihood case, the Residual Sum of Squares
(RSS) along the path can be written as:

χ2
PL,i(x) = min

θj 6=i

[

χ2(~θ|θi = x)
]

(2.10)

The parameter vectors associated with such a path shall be denoted as ~θPL.
Nested models are models where one model can be transformed into the other
by imposing linear constraints on the parameter values. When two models are

nested (M(~θPL) and M(~θopt)), their likelihood ratio is approximately distributed

according to a χ2
p distribution. Here p refers to the number of degrees of freedom

which is defined as the difference in the number of parameters (which in this case
is 1). Therefore, a bound based on the likelihood ratio can be used (2.11) [37].
Other equations or criteria can be employed for checking whether a fit is still
acceptable. In this equation, α denotes a desired significance level.

−2 ln

(

L(~θPL)

L(~θopt)

)

≤ χ2
1−α,1 (2.11)

Structural non-identifiability manifests itself as a completely flat profile, while
practical non-identifiability involves flattening out of the likelihood, preventing
it from reaching an appropriate bound. Note that in order to get a complete
picture, profiles should be run for each separate acceptable optimum and sub-
sequently be merged. An example is shown in Figure 2.2 where the profiles
corresponding to different modes are shown in blue and red. Note how in the
blue profile the second mode of parameter 4 can remain undetected otherwise.
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Figure 2.2: Top, Profile Likelihoods for different modes of a model of the JAK-STAT sig-
naling pathway. Bottom, merged profile likelihoods (black, solid) with the associated
likelihood threshold (black, dashed) contrasted with the Bayesian posterior distributions
obtained using Markov Chain Monte Carlo (red). On the right is the joint posterior den-
sity for two model parameters along with a scatter plot of the profile likelihood (colored
according to the RSS). Note how one mode clearly dominates in the Bayesian posterior
density (best observed in parameter 1). This relatively large probability is caused by the
flattening out of the likelihood with respect to parameter 2. As shown in the joint posterior
density (again obtained using Markov Chain Monte Carlo) on the right, the mode obtains
its mass from the large area corresponding to practical non-identifiability of parameter 2.

2.4.5 Sampling based methods: frequentist

A different approach to deal with uncertainty, known as bootstrapping, is to at-
tempt to sample replicates {yD

∗1, yD
∗2, yD

∗Q} of the observed data and repeat the

estimation for each of these samples. The result is a distribution of parameter
estimates, which gives insight into the parameter uncertainty. There are several
mechanisms for obtaining bootstrap samples (which serve as simulated repli-
cates in the estimation), which can roughly be divided in two classes: parametric
and non-parametric bootstraps.

A parametric bootstrap is based on fitting a model to the data, and draw-
ing samples from its parameterized error distribution [15, 16, 23]. In a paramet-
ric bootstrap it is important that the model used to obtain the samples closely
matches the process that generated the data. Alternatively, one can make use
of probabilistic models such as the Gaussian Process (GP) to obtain bootstrap
samples [63]. A GP is a collection of random variables defined by a mean and
a covariance function which relate the different measurements. Such covariance
functions incorporate a description of the relationship between the various data
points. Using the available data in combination with Bayes Rule, the parameters
of such a GP are updated to a posterior distribution from which samples can be
drawn. These samples can then be supplemented with noise for use as boot-
strap samples [64]. The alternative (non-parametric bootstrap) is to sample with
replacement from the available experimental replicates [15, 65, 66]. The general
idea here is that the variability of the estimate around the true value is mimicked
by the variability of estimates based on bootstrap replicates around the original
estimate (see Figure 2.3). Note however that bootstrap methods of this sort re-
quire a sufficient number of replicates in order to adequately reflect variability.
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Figure 2.3: Graphical illustration of the bootstrap procedure. For each data point multiple
realizations (denoted by the stars) are generated using a parametric normal distribution.
Bootstraps were based on a model of a Goodwin oscillator [71]. 8 ’data replicates’ are gen-
erated for each time point, which were used to compute the mean and standard deviation
required for the parametric bootstrap. Crosses denote the individual bootstrap samples.
True model is shown in black. Grey lines indicate the different fits.

Note that combined with the data resampling, it is important that optimiza-
tions are either initiated from widely dispersed initial parameter values or that a
global optimization method is used. Though no method can guarantee finding
the global optimum in the non-linear case, global optimization methods have
the ability to leave local modes and (initially) traverse the parameter space more
freely. This is necessary since new modes can arise from the bootstrapping pro-
cedure. Based on the resulting parameter estimates, confidence intervals can be
obtained by considering a significance level and determining percentile bounds
[65, 67, 68]. These confidence intervals tend to underestimate the true confidence
region however and need to be corrected for bias and skewness [69, 70]. Boot-
straps have also been used to perform model selection [23] and testing [15].

2.4.6 Sampling based methods: Bayesian

Whereas most methods discussed earlier revolve around minimization or deter-
mining bounds, the Bayesian methods often require evaluation of probabilistic
integrals. These approaches usually involve sampling probability densities to
determine bounds which enclose (100 − α)% of the desired density. An example
of the difference between frequentist and Bayesian inference is shown in Figure
2.2. These problems often involve integration over many dimensions, which are
typically evaluated using sampling based methods. An example of such an inte-
gral is shown in equation (2.12), where p in the integral refers to the probability

18



2.4 Parameter uncertainty

density of a specific parameter set ~θ and x refers to the quantity whose expected

value is being computed. In the sampled version, ~θi refers to a vector of random
parameter values independently drawn from a uniform distribution.

E[x] =
∫

Ω
p(~θ)x(~θ)d~θ ≈

M

∑
i=1

p(~θi)x(~θi) (2.12)

In practice, uniform random sampling is inefficient due to the low likelihood
of most samples. One alternative is importance sampling. Here, samples are
drawn from a different probability density function (g) than the target distribu-
tion which requires including a probability density ratio in the summation:

E[x] =
∫

Ω
g(~θ)

p(~θ)

g(~θ)
x(~θ)d~θ ≈

M

∑
i=1

p(~θi)

g(~θi)
x(~θi) (2.13)

This procedure is efficient when the importance sampling distribution over-
laps well with the target distribution (see Figure 2.4). For non-linear models, it
is often non-trivial to find a distribution that suits this need. Additionally, p and
g refer to probability densities which should to integrate to one. Computing the
required normalizing constants is difficult, since this involves integrating over
the parameters. One alternative is self-normalized importance sampling but this
adds the requirement that p may not have heavier tails than g:

E[x] ≈ ∑
M
i=1 w(~θi)x(~θi)

∑i=1 w(~θi)
with w(~θi) =

p(~θi)

g(~θi)
(2.14)
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Figure 2.4: Importance sampling performance. Top row: Target probability density (solid)
and importance sampling distribution (dashed lines). Bottom row: Estimate based on the
importance sampling identity. Grey lines indicate the 95% interval based on the acquired
samples. Dashed lines indicate true 95% interval.
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2. Parameter Uncertainty in Biochemical Models

Markov Chain Monte Carlo

The difficulty of finding suitable importance sampling densities make sampling
methods such as Markov Chain Monte Carlo (MCMC) an attractive option. This
class of methods can sample directly from any arbitrary probability density func-
tion which is known up to a normalizing constant [72]. Note that to ensure
convergence, one needs to make sure that the posterior distribution is proper
(integrable), which is easily checked by computing MAP profiles and making
sure they do not flatten out [10, 62].

One MCMC algorithm, known as Metropolis Hastings, performs a random

walk through parameter space, where each proposal step ~θ∗ is based on a local

proposal distribution based on the current state ~θ. This step is either accepted
or rejected based on the probability densities at the sampled points [72]. This

is typically done by computing the likelihood L(~θ∗) and calculating the non-

normalized density p̃(~θ∗|yD) = L(~θ∗)p(~θ∗), where p(~θ∗) refers to the prior prob-
ability density. This proposal is subsequently accepted with probability:

Paccept = min

(

p̃(~θ∗|yD)q(~θ∗ → ~θ)

p̃(~θ|yD)q(~θ → ~θ∗)
, 1

)

(2.15)

The ratio of q is known as the Hastings correction and ensures detailed bal-
ance, a sufficient condition for the Markov Chain to converge to the equilibrium
distribution. Typically, the first sequence of iterations are spent on moving to-
wards the region of high probability density. This process is referred to as burn-
in. Samples corresponding to the burn-in phase are usually discarded, since these
are not very representative of the posterior probability distribution. How long it
takes for a sampler to reach converge and obtain a representative sample of the
posterior distribution strongly depends on the problem under investigation and
the sampler that is used. See Cowles et al for an in-depth review on diagnostics
for detecting non-convergence [73].

A critical component of MCMC samplers is the proposal distribution. When
the proposal distribution matches the local shape and size of the probability den-
sity function poorly, then this will lead to either too many rejections (proposals
in regions with much lower probability densities) or slow convergence due to
slow traversal of the parameter space. Both these scenarios are characterized by
large autocorrelations between different samples of the chain (see Figure 2.5).
This is why samplers have been developed which exploit the local geometry of
the posterior PDF [12,38] either by using proposal distributions that adapt to the
local geometry using an approximation of the FIM, based on linear sensitivities,
or including higher order information as well. One example of such a method
is MMALA, a method based on Langevin diffusion on a Riemannian manifold
which scales well to large systems with widely disparate parameter scales [38].
Note that singularity of the FIM approximation must be avoided. One option is to
use blocking strategies, which alternately run the MCMC for different subgroups
of parameters [39], thus improving numerical stability by using smaller FIMs.
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Figure 2.5: On the left: Graphical representation of various Markov Chain Monte Carlo
runs. From top to bottom, a chain with a proposal kernel that is too small leading to
poor traversal of the parameter space and inability to leave a local mode, a chain with a
proposal kernel that is too large resulting in few accepted trial moves and a chain which in-
corporates exchange between chains using different proposal sizes, combining both large
and small moves. Also note the differences in autocorrelation length as evidenced by their
autocorrelation function (ACF). On the right the two dimensional objective function that
was used in this problem. A mixture of 6 multivariate normal Gaussians with σ = 0.1 and

correlation coefficients chosen according to ρ = k
7 sign(U[0, 1]− 0.5) with k = [1...7]

Population based MCMC

In theory, MCMC methods should be able to reach all probable regions in param-
eter space when considering extremely large sample sizes. In practice however,
the number of samples required to be able to reach this may be unreasonably
high. In some cases, there can be distinct peaks (or modes) in the PDF. Moving
between modes requires traversing a region of low probability density, which
is improbable, and, does not occur often. This results in poor mixing between
different modes in the probability density function. To mitigate these problems,
researchers have proposed the idea of using multiple interacting MCMC chains
[71, 74–76]. One example of such a sampler involves running multiple chains at
different temperatures, where the different posterior densities are proportional
to:

pT(~θ|yD) ∝ p(yD|~θ) 1
T p(~θ) (2.16)

Since the likelihood function will flatten out for higher temperatures, chains
at higher temperatures are able to traverse more freely. The highest temperature
results in sampling directly from the prior. As these chains are updated, samples
from the higher temperatures are exchanged with samples at lower temperatures
using switch moves. These are performed by randomly selecting two tempera-
tures and computing a Metropolis-Hastings step using the acceptance probability
given by:

Pswitch = min



1,
p(yD|~θb)

1
Ta p(yD|~θa)

1
Tb

p(yD|~θa)
1

Ta p(yD|~θb)
1

Tb



 (2.17)
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2. Parameter Uncertainty in Biochemical Models

Updates for each temperature are performed as usual. After convergence, the
distribution at T = 1 is the desired posterior. One issue with this approach is
that it requires all priors to be proper as the likelihood will completely flatten
out for high temperatures. If one does not wish to assume such an informative
prior, or the acceptance rate of switch moves between temperatures is unaccept-
ably low, Parallel Hierarchical Sampling can be considered [77] as an alternative.
Here multiple chains using different proposal kernels run at the same tempera-
ture (hence every switch move is accepted) and one chain is marked as ’mother’
chain, which is involved in all exchanges. Since by design such samplers accept
all exchange moves, autocorrelation is highly reduced (see Figure 2.5). For an
application of such a sampler to a high dimensional system see [78]. Note that
for both techniques, proposal kernels that exploit local geometry can still be used.

Sequential Monte Carlo

Another option to obtain samples from the posterior distribution is provided
by Sequential Monte Carlo algorithms. Rather than having multiple interacting
chains, these samplers propagate multiple parameter sets, referred to as particles,
through a series of intermediate distributions. These intermediate distributions
incrementally become harder to sample from. One such approach is Sequential
Importance Resampling, which is a recursive version of Importance Sampling.
At each iteration, each particle is assigned a weight according to the ratio be-

tween the distribution in the sequence currently targeted pT(~θ
t|yD), and, the

current proposal distribution vt:

wt
i =

pT(~θ
t
i |yD)

vt(~θt
i )

(2.18)

Here the superscript t indicates the iteration number (and thereby also the in-
termediate distribution number). Subscript i indicates the particle number. Sub-
sequently, these weights are normalized to one and the particles are then resam-
pled proportionally to these weights. These samples then form the basis for the
next intermediate distribution. One issue with this approach is that the sampling
quickly begins to show degeneracy. This is when most weights approach zero,
resulting in only a few samples effectively contributing to the estimate. This de-
generacy is typically avoided by perturbing the particles after resampling using
a proposal kernel.

This process of weighting, resampling and perturbing is repeated until the
posterior distribution is reached. This process is schematically illustrated in Fig-
ure 2.6. Two merits of these methods are the fact that these particles can easily
be evaluated in parallel and that multi-modal probability density functions are
less problematic. The performance of the algorithms strongly depends on the
choice of intermediate distributions, number of particles and perturbation ker-
nels. Currently, this requires some practical experience with the methods. Which
perturbation kernels to use is still an open problem, but it could be beneficial to
consider the local geometry of the problem as outlined before in the section on
MCMC. Additionally, these methods require a prior distribution on all parame-
ters, which should be wide enough to ensure a good coverage of the parameter
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Figure 2.6: Graphic illustration of Sequential Importance Sampling. From left to right:
Sampling from the prior distribution. Resampling based using the current target distribu-
tion (dashed lines) as weights. Perturbation of the samples (crosses) by a proposal kernel.
Resampling based on the ratio between the target distribution and previous distribution.
Until convergence to the desired target distribution. Histogram of the final distribution
shown in gray.

space. One particular application of such a sampler in the setting of Approximate
Bayesian Computation can be found in [79]. In Approximate Bayesian Compu-
tation, one defines a distance function between real and simulated data. Rather
than having a likelihood function which flattens out at different temperatures
as before, the distance threshold at which a parameter set is deemed acceptable
is sequentially decreased. For sufficiently small distances, this posterior distri-
bution approximates the true posterior distribution. One major advantage of
such methods is that they are still applicable, even when the likelihood becomes
prohibitively expensive to compute.

2.4.7 Simulation free MCMC

One issue to consider is that the probability density functions of larger models
used in systems biology can be expensive to sample from. Profiling the execu-
tion times of any of these methods often reveals that the computational effort
is usually dominated by the time required to solve the model and/or sensitivity
equations. Consequently, simulation free methods are another promising avenue
of research. Rather than solving the system of ordinary differential equations,
derivatives of the state variables are estimated, enabling the modeler to sidestep
the problem of model simulation and working with the right hand side of the
differential equations directly. Initial approaches in this direction involved using
spline based interpolation of the data [80] followed by optimization. However,
these early approaches involved a requirement for all state variables to be mea-
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2. Parameter Uncertainty in Biochemical Models

sured and required choosing smoothing parameters. These methods were further
generalized by [81], where both the spline fitting and data fidelity were combined
in a single estimation step.

Approaches for absolving the need of an ODE integrator have also been sug-
gested in a Bayesian setting [82]. Here, a GP was used to specify a distribution
over the state variables and its derivatives. Subsequently, a correlation between
the different state derivatives and the right hand side of the model equations is
imposed. Values for the state variables are obtained from the GP. MCMC can
then be performed on the joint posterior of the GP coefficients and model param-
eters, or sequentially by determining MAP estimates for the GP in an initial step.
Note however, the priors for the GP also control the smoothness (and therefore
dynamic behavior) of the state variable trajectories.

2.5 Predictions

Computational models are developed in order to make predictions. Often there
is a need to predict system responses to a specific stimulus or to predict some
internal (hidden) state variable that cannot be measured directly. In these cases
it is of particular interest how the uncertainty in the data is propagated to the
predictions. Depending on the formalism of choice, there are several ways to
estimate prediction uncertainties.

2.5.1 Asymptotics and linearizations

The most straightforward approach is to assume the parameter uncertainty dis-
tribution to be Gaussian and to propagate the parameter uncertainty to the pre-
dictions by using a linearized version of the model. Such an approach can be
realized by computing the first order sensitivities of the model [83]. These can
subsequently be used to approximate the covariance matrix of the parameter
estimates (2.8) and project the associated uncertainties onto the first order sen-
sitivities of the predictions of interest:

Var(y) =

[

(∇y)T
(

∇T∇ ln(L(~θ))
)−1

(∇y)

]

~θ=~θopt

(2.19)

where

∇ =

(

d

dθ1
,

d

dθ2
, . . . ,

d

dθn

)T

(2.20)

Here ∇y refers to the sensitivity of y with respect to each of the parameters.
This method is applicable when there is little uncertainty in the parameters and
the local model behavior can reasonably be approximated by a linear approxi-
mation. A Bayesian version of this linearized approach which takes into account
thermodynamic constraints and assumes multiplicative errors and log-normal
parameter distributions is proposed in [84]. When multiple modes exist, this ap-
proach can and should be repeated for each of the modes. Issues arise when pa-
rameters are non-identifiable or highly uncertain (see Figure 2.7). In these cases
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Figure 2.7: Estimating prediction variances using linearization. On the left the case with
small uncertainty, where the linear parameter sensitivities provide an adequate descrip-
tion for projecting the parameter uncertainty onto the predictions. On the right, the case
with large parameter uncertainty where the non-linearity of the model results in a poor
estimate of the predictive distribution when it is estimated via linear projection.

such an approach would no longer be appropriate and one needs to resort to
more advanced methods such as the ones mentioned below.

2.5.2 Prediction profiles

An approach similar to the Profile Likelihood method can also been applied in
prediction space [13]. Prediction Profiles are obtained by augmenting the experi-
mental data with an additional point which has to be satisfied by the simulation.
Initially, this point is based on the simulation belonging to the optimal parame-
ter values. Similar to the Profile Likelihood, this new constraint is then shifted
followed by subsequent parameter optimization. This process is continued un-
til the model simulations corresponding to the current parameter set no longer
describe the measurement data (or some other suitable error bound is reached).
Mathematically this can be expressed as follows:

χ2
PPL(z) = min

~θ,~θ∈{~θ|Q(~θ)=z}

[

χ2(~θ)
]

(2.21)

Where Q refers to a function which takes a parameter and produces the sim-
ulation point of the prediction that is being profiled. By repeating this procedure
for different predictions, reliable confidence intervals can be obtained, consid-
ering only one-dimensional scans within prediction space. Predictions that are
well constrained are useful for performing validation experiments while poorly
constrained predictions are useful for performing experiments which optimally
reduce the uncertainty in some sense.

2.5.3 Bayesian predictive simulation

In the Bayesian setting, samples from the posterior distribution can directly be
used for prediction uncertainty analysis. The uncertainty in the predictions y can
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2. Parameter Uncertainty in Biochemical Models

be obtained by integrating the predictions over the posterior distribution of pa-
rameter values. Marginalizing the predictions over the converged MCMC chain
provides a predictive distribution (note that this includes simulation from the
noise model):

p(yobs|yD) =
∫

Ω
p(yobs|~θ)p(~θ|yD)d~θ (2.22)

In practical situations, this amounts to simulating the model using parameter
sets from the posterior distribution. For visualization, the state space can subse-
quently be divided into a discrete number of levels after which histograms of the
posterior predictive distribution can be computed for each prediction. Alterna-
tively, credible intervals can be computed by selecting a desired probability and
determining bounds that enclose this fraction of the posterior density. Usually,
these bounds are chosen in such a way that the posterior density between the
bounds is maximal (Highest Posterior Density). Since the posterior predictive
distribution forms a link between the various predictions of interest, while being
constrained by the available data and prior knowledge, the relations within this
distribution can be highly informative and useful for both system analysis and
optimal experiment design [85].

2.6 Concluding remarks

Uncertainty analysis is an important tool to assess the reliability of various model
predictions. Moreover, its results can also be used for model analysis and im-
provement. Predictions that are well constrained (core predictions [15, 86]) are
useful for testing whether our current assumptions and model provide a suffi-
cient description of reality, while highly uncertain predictions point to opportu-
nities for gathering additional data which reduces uncertainty in some optimal
sense.

Relations between these different parameter uncertainties and their predic-
tive counterparts can be determined. This helps uncovering how different pre-
dictions in the model relate to each other dynamically and therefore gives in-
sights in how the system behaves [87, 88]. Additionally, correlations and covari-
ances between different state variables of interest can be exploited in order to de-
termine which state variables would be most beneficial to measure. Techniques
for this exist in both a frequentist [13,37,89] as well as a Bayesian setting [85,88].
This makes it possible to tailor experiments specifically to predictions that are of
particular interest, thereby saving time and resources.

Note that many biological systems exhibit log-normally distributed errors
arising from multiplicative errors [46, 90]. In order to convert this to additive
error, data and model simulations can be log-transformed and inferences per-
formed in logarithmic space [46]. This chapter provided an overview of state-of-
the-art methods for uncertainty analysis applicable to dynamical systems com-
prised of ODEs. The suitability of each of the aforementioned methods strongly
depends on the problem and system under investigation, as well as the assump-
tions the investigator is willing to make. Some of the issues that often arise in
systems biology models have been mentioned. As shown in Table 2.1, some of
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2.6 Concluding remarks

these techniques have already been applied to systems biology models. Never-
theless, it seems that there is still a gap between groups working on methodology
and groups involved in the development of new models. This gap is particularly
apparent in the case of the sampling based methods which are more involved
computationally. Hopefully in the future, and with the advent of new tutorials
and tools [8–11] this gap will be bridged, by providing the means to effectively
reduce uncertainty and to pave the way for conclusions despite uncertainties.
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A Strategy for Prediction
Uncertainty Analysis 3

Parts of this chapter are described in:

Vanlier, J. and Tiemann, C.A. and Hilbers, P.A.J. and van Riel, N.A.W. (2012),
An integrated strategy for prediction uncertainty analysis, Bioinformatics, 28(8), 1130-
1135.
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3. A Strategy for Prediction Uncertainty Analysis

Abstract

To further our understanding of the mechanisms underlying biochemical path-
ways mathematical modelling is used. Since many parameter values are un-
known, they need to be estimated using experimental observations. The com-
plexity of models necessary to describe biological pathways in combination with
the limited amount of quantitative data results in large parameter uncertainty,
which propagates into model predictions. Therefore, prediction uncertainty anal-
ysis is an important topic that needs to be addressed in Systems Biology mod-
elling. A strategy for prediction uncertainty analysis is proposed. This approach
integrates Profile Likelihood analysis with Bayesian estimation. Our method is
illustrated with an application to a model of the JAK-STAT signalling pathway.
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3.1 Introduction

3.1 Introduction

One of the driving ambitions of mathematical modeling is to formalize hypothe-
ses about a biochemical network in such a manner that these can be tested. Com-
putational models can also be used to learn more about the system under inves-
tigation, as well as predict unmeasured behavior or responses. Once the model
describes the system to an acceptable degree, it is time to make predictions. How
well these predictions can actually be made depends strongly on the constraints
the data manage to impose on the dynamics as well as the required complexity of
the model. In the previous chapter, some of the different techniques available in
literature were discussed. This chapter introduces a strategy particularly suitable
for uncertainty analysis of dynamical models. This strategy involves performing
different analyses sequentially to detect and avoid problems associated with the
individual techniques. The chapter is composed of two parts: First the strategy
will be outlined after which it is applied to a test case.

We consider models of biochemical networks based on Ordinary Differential
Equations (ODEs). Measurements are performed on a subset or a combination
of the total number of state variables in the model ~yobs(t), which results in a
collection of data points y consisting of elements yij. Considering M time series
of length Ni with additive independent Gaussian noise, the probability density
function of the data is given by:

p(y|~θ) =
M

∏
i=1

Ni

∏
j=1

p(yij,~θ)

= K exp



−
M

∑
i=1

Ni

∑
j=1

(

yij − yi(tj,~θ)√
2σij

)2




(3.1)

The first step in the approach is to employ Maximum Likelihood Estimation
(MLE) to find model parameters for which the probability density function most

likely produced the data. Here the likelihood function L(~θ), whose right hand

side is identical to p(y|~θ), is maximized over the parameters ~θ. Subsequently,
likelihood based methods are used to determine how constrained the model pa-
rameters are when considering only the observed data. After ensuring that the
posterior distribution is integrable, Bayesian inference is used to sample from
the posterior probability distribution of parameters. This sample is then used
to produce predictive distributions with their associated credible intervals. By
performing these analyses sequentially, it is possible to increase our confidence
that the results are reliable and reproducible.
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3.2 Methods

The proposed approach is based on four steps which shall be discussed below.

Step 1. Obtaining parameters (MLE and MAP)

Maximum likelihood estimation corresponds to finding the maximum of L(~θ)
by minimizing the negative log of the likelihood. Assuming the data variances
known, the normalizing constant in the likelihood function is independent of the
parameters. Furthermore, since constant values have no effect on the location
of the minimum, the quantity to be minimized during parameter estimation be-
comes:

χ2(~θ) =
M

∑
i=1

Ni

∑
j=1





yD
ij − yi(tj,~θ)

σij





2

(3.2)

This quantity can be recognized as a weighted sum of squared differences
between model and data. A regularized version of this method is the Maximum
A Posteriori (MAP) estimator, which minimizes the negative log-likelihood mul-
tiplied by the log-prior. Finding the optimum can be challenging due to the ex-
istence of multiple local minima and wide range of model sensitivities [1]. The
first step in the approach employs Monte Carlo Multiple Minimization (MCMM),
which entails performing parameter estimation for a large number of widely dis-
persed initial values. Such an initial run enables the modeler to probe the pa-
rameter space for the existence of multiple minima at reasonable computational
cost.

Step 2. Parameter bounds and identifiability

When model predictions sufficiently describe the experimental data, confidence
intervals are obtained using the Profile Likelihood method [2]. Each profile like-
lihood is initiated at the best fit parameters after which one parameter (denoted
with i) is changed incrementally while optimizing all the other parameters. The
Weighted Residual Sum of Squares (WRSS) along the path can be written as:

χ2
PL,i(x) = min

θj 6=i

[

χ2(~θ|θi = x)
]

(3.3)

We obtain confidence bounds by determining the value of x for which the
WRSS reaches a threshold. This threshold is based on the likelihood ratio test
given by:

−2 ln

(

L(~θPL)

L(~θopt)

)

= χ2(~θPL)− χ2(~θopt) ≤ χ2
1−α,1 (3.4)

The fact that each parameter is treated independently (in the sense that only
a one dimensional traversal is required for each parameter) makes this method
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efficient to compute. In some cases, model parameters can be structurally non-
identifiable. Structural identifiability is a property of the model, observations and
stimuli and does not depend on the actual precision of the data. Structurally
non-identifiable parameters manifest themselves through a constant χ2

PL,i for the
involved parameters. Consequently, no parameter confidence bound can be com-
puted for such a parameter. In other cases, parameter bounds cannot be deter-
mined due to insufficiently precise data. Such parameters are typically associated
with profiles which flatten out in certain directions and are named practically non-
identifiable [2].

After performing a profile likelihood analysis, it is important to verify that the
confidence intervals cover all acceptable solutions obtained in the MCMM from
step 1. If this is not the case, then another local optimum exists and the profile
likelihood method should be repeated starting from this optimum. After profiles
for the different modes have been estimated, these profiles are merged to obtain
an overall profile (see Appendix 3.7.1 for further details).

Step 3. Assessing prediction uncertainty

The aim in the third step of the analysis is to use the measurement data to infer a
posterior distribution over the parameters rather than a single parameter set with
confidence intervals. Applying Bayes’ rule, we obtain the following expression
for the posterior parameter probability:

p(~θ|yD) ∝ p(yD|~θ)p(~θ) (3.5)

where p(yD|~θ) represents the conditional probability density of data given
a parameter set. Here, the data has already been observed, therefore this is re-

placed by the likelihood function. Finally, p(~θ) denotes the prior probability den-
sity of the parameters. This prior is specified before the data has been observed
and usually represents either the current state of knowledge or attempts to be
non-informative (or objective). Note that most priors depend on the chosen pa-
rameterization, which demonstrates that uniform priors do not necessarily (and
typically do not) reflect complete objectivity [3, 4] in the Bayesian setting.

To sample from the posterior, Markov Chain Monte Carlo (MCMC) is
employed. MCMC can generate samples from probability densities which are
known up to a normalizing factor [5]. The Metropolis-Hastings algorithm used
in this strategy performs a correlated random walk through parameter space,
where each step is based on a local proposal distribution and an acceptance
criterion. This acceptance criterion is based on the posterior probability
densities at the sampled points. Rather than sampling purely at random (where
most of the samples would be from regions of low likelihood), such a chain
draws samples proportionally to the posterior probability density. The
histogram of such a parameter walk with respect to a specific parameter
corresponds to the marginalized (integrated over all other variables) posterior
parameter distribution for that specific parameter.
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3. A Strategy for Prediction Uncertainty Analysis

The algorithm proceeds by iteratively performing the following steps:

1. Generate a sample~θn+1 by sampling from a proposal distribution based on

the current state~θn

2. Compute the likelihood of the proposed parameter set L(~θn+1) and calcu-

late p̃(~θn+1|yD) = L(~θn+1)p(~θn+1), where p(~θn+1) refers to the prior prob-
ability density.

3. Draw a random number γ from a uniform distribution between 0 and 1

and accept the new step if γ < min

(

p̃(~θn+1|yD)q(~θn+1→~θn)

p̃(~θn |yD)q(~θn→~θn+1)
, 1

)

.

Here p̃ denotes a density which is not normalized. The ratio of q is known as
the Hastings correction and ensures detailed balance, a sufficient condition for
the Markov Chain to converge to the equilibrium distribution. It corrects for the

fact that the proposal density going from parameter set ~θn to ~θn+1 and ~θn+1 to
~θn is unequal when the proposal distribution depends on the current parameter
set, and, is given by the inverse of this ratio. The simplicity of the algorithm
makes it conceptually attractive. Note however that simple approaches can lead
to MCMC samplers that converge slowly or only explore a single mode [6].

Proposals

Each iteration requires a new proposal, which is taken from a proposal distribu-
tion. To generate samples which allow the sampler to efficiently traverse param-
eter space, the proposal distribution should adapt to the local geometry of the
probability density function. This becomes particularly important in the non-
identifiable case since the parameters will be strongly correlated [7]. Ensuring
that the sampler takes large steps along the parameter correlations helps acceler-
ate convergence. To generate these proposals an adaptive multivariate Gaussian
distribution is used. Its covariance matrix is based on a quadratic approxima-
tion to the negative logarithm of the probability density function at the current
parameter set [1]. This matrix is computed by taking the inverse of an approx-
imation to the Hessian matrix of the model under consideration. This proposal
distribution is subsequently scaled by a problem specific proposal scaling factor
that is tuned using short exploratory runs of the sampler.

Sometimes certain directions in parameter space can be so poorly constrained
that this leads to a near singular Hessian (some singular values near zero). Con-
sequently, the proposal distribution will become extremely elongated in these
directions, leading to proposals with extremely large or small parameter values
resulting in a decline of the acceptance ratio. To avoid such numerical difficulties,
singular values below a certain threshold are set to a specified minimal cutoff
(prior to inversion). Additionally, second derivatives of the non-uniform priors
(when available) are included directly in the Hessian approximation.
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3.2 Methods

Parameter representation and non-identifiability

The posterior distribution is required to be ’proper’ (finitely integrable) other-
wise the sampler will not converge and inference is not possible [8]. Without a
finitely integrable prior to constrain the posterior distribution, improper likeli-
hoods can lead to improper posteriors. This becomes an issue when parameters
are non-identifiable and the data contains insufficient information to ensure a
proper likelihood for those parameters. In such cases, one pragmatic approach
involves incorporating empirical priors to ensure that parameters which are non-
identifiable from the data, do not drift off to extreme values [8] hampering ODE
integration and resulting in numerical instabilities. Although such priors make
the following analyses feasible, they artificially reduce the parameter uncertainty.
It is therefore prudent to study the effects of the assumed priors by repeating the
analysis for different prior distributions.

Priors are typically not re-parameterization invariant. Although seemingly
non-informative, a uniform prior in linear parameter space implies that
extremely large rates have an equal a priori probability of occurring as slow
rates. For positively defined parameters, a uniform distribution in logarithmic
space corresponds to an non-informative prior [9]. Such a prior gives equal
probability to different orders of magnitude (scales). An approximate scale
invariance of kinetic parameters has been observed in biological models [10].
The transformation between parameters can be described by the matrix of
partial derivatives with respect to the equations which transform the
parameters from one parameterization to another (the Jacobian of the
transformation). To calculate the prior density that is equivalent under a
different parameterization and correct for the stretching and compression of the
distribution, one needs to multiply the prior probability density by the absolute
value of the determinant of the Jacobian of the transformation:

p( f (~θ)) = p(~θ)

∣

∣

∣

∣

∣

∣

∣

∣




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

d f (θ1)
dθ1
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d f (θ1)
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. . .

...
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


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∣
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∣
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(3.6)

Convergence

Burn in refers to the time it takes the chain to get to a region of high probability
density and samples obtained during this period are discarded to avoid assign-
ing too much weight to highly improbable samples. One approach to avoid a
long burn-in period is by using a deterministic minimization algorithm to ob-
tain a best fit parameter set [1] which is likely to be a reasonable sample within
the posterior probability distribution. Determining whether a sufficient number
of samples has been acquired is hard to assess, and in practical situations only
non-convergence can be diagnosed [11]. In order to try and detect possible non-
convergence, a single long chain was divided into several batches to determine
whether systematic differences could be observed.
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3. A Strategy for Prediction Uncertainty Analysis

Step 4. Analysis of the posterior parameter and predictive distri-
bution

The final stage of the strategy involves analyzing the obtained results to probe
model properties. Having determined the posterior distribution of model pre-
dictions, there is now a direct link between different predictions and parameters,
which can be exploited by determining how predictions relate to each other and
to the model parameters. The uncertainty in predictions yobs can be obtained
by integrating the output over the posterior distribution of parameter values.
Note that yobs can be any prediction obtained using the model. In other words,
marginalizing the predictions over the converged MCMC chain provides the pre-
diction uncertainty as shown in:

p(yobs|yD) =
∫ ∞

−∞
p(yobs|~θ)p(~θ|yD)d~θ (3.7)

The posterior predictive distribution of simulations can be visualized by com-
puting predictive histograms per time point. Alternatively, credible intervals can
be computed by selecting a desired probability and determining bounds that en-
close this fraction of the posterior density. These bounds are chosen in such a
way that the posterior density between the bounds is maximal. By examining
correlations between different state variables of interest, it is possible to deter-
mine which states would be good measurement candidates if a prediction we
happen to be interested in is not measurable. Similarly, such correlations can be
explored between state variables and parameters in order to determine which
measurement could be used to avoid the necessity of having to use an overly
informative prior. In summary, the entire strategy consists of the following steps:

1. Detection of (multiple) acceptable parameter modes using an exploratory
large scale search.

2. Detection of structural and practical non-identifiabilies using the profile
likelihood method.

3. Perform a Bayesian analysis considering detected non-identifiabilities from
the PL method.

4. Perform an analysis of the posterior parameter and predictive distributions.

3.3 Implementation

Algorithms were implemented in MATLAB (Natick, MA). Numerical integration
of the differential equations was performed using compiled MEX files using nu-
merical integrators from the SUNDIALS CVode package (Lawrence Livermore
National Laboratory, Livermore, CA). Absolute and relative tolerances were set
to 10−8 and 10−9 respectively. Integration time for a single integration was al-
lowed to be 10 seconds at most after which an integration is assumed to fail and
a large error is returned. Throughout the experiments, integration failures were
carefully monitored.
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3.4 JAK-STAT model

For the MCMM, random sampling was performed using a log-uniform hy-
percube to obtain initial parameter values. These were subsequently optimized
using the large scale algorithm from the MATLAB Optimization Toolbox. The
best fit was subsequently selected and used for determining profile likelihoods.
When profiling, the following heuristic was used to determine stepsize: Each
time the parameter of interest is increased or decreased, the increase in the WRSS
is evaluated. Subsequently the step size was increased when the increase in
WRSS was below a certain threshold, while decreasing the step size and rejecting
the step when the WRSS increased too much. These thresholds were defined
relative to the difference in WRSS of the optimum, and, the threshold based on
the likelihood ratio [10−3χrange, 10−2χrange]. Step sizes were forced to stay within

the range of [10−5, 10−1].

To attain an adequate acceptance rate and good mixing in the MCMC, the
proposal scaling was determined during an initial tuning stage. This tuning was
performed by running several short chains (100 iterations each), targeting an ac-
ceptance rate between 0.2 and 0.4 [12]. If the acceptance rate was higher, 10%
was added to the scale (which scales the entire covariance matrix), while 10%
was substracted in the case where the acceptance was too low. Interestingly, the
chains at higher temperatures had very similar acceptance rates once started. The
cutoff for the Hessian approximation was set to 10−6. It was observed that this
greatly affected the acceptance rate indicating (near) singularity of the Hessian
approximation.

3.4 JAK-STAT model

In this section, the approach shall be demonstrated using a model of the STAT
signaling pathway [2,13] depicted in Figure 3.1. The model is based on a number
of hypothesized steps. First erythropoietin (EpoR) activates the EpoR receptor
which phosphorylates cytoplasmic STAT (x1). This phosphorylated STAT (x2)
dimerizes (x3) and is subsequently imported into the nucleus (x4). Here dis-
sociation and dephosphorylation occurs, which is associated with a delay. The
driving input function was approximated by a spline interpolant, while the delay
was approximated using a linear chain approximation. The model equations are
as follows:

ẋ1 = 2

(

Vnucleus

Vcyto

)

(p4x13)− p1x1u1 ẋ8 = p4x7 − p4x8

ẋ2 = p1x1u1 − 2p2x2
2 ẋ9 = p4x8 − p4x9

ẋ3 = p2x2
2 − p3x3 ˙x10 = p4x9 − p4x10

ẋ4 =
Vcyto

Vnucleus
(p3x3)− p4x4 ˙x11 = p4x10 − p4x11

ẋ5 = p4x4 − p4x5 ˙x12 = p4x11 − p4x12

ẋ6 = p4x5 − p4x6 ˙x13 = p4x12 − p4x13

ẋ7 = p4x6 − p4x7

(3.8)
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3. A Strategy for Prediction Uncertainty Analysis

u

Figure 3.1: Model of the JAK-STAT pathway. In this model u1 serves as driving input,
while the total concentration of STAT (x1 + x2 + 2x3) and the total concentration of phos-
phorylated STAT in the cytoplasm (x2 + 2x3) were measured. Note that the step from x4

back to x1 is associated with a delay.

Data from Swameye et al. were used for inference [14]. Observables were
the total concentration of STAT and the total concentration of phosphorylated
STAT in the cytoplasm, both reported in arbitrary units (which necessitates two
scaling parameters). The initial cytoplasmic concentration of STAT is unknown
while all other forms of STAT are assumed zero at the start of the simulation.
The vector of unknown parameter values consists of the following elements ~θ =
(

p1, p2, p3, p4, s1, s2, x0
1

)

.

3.5 Application of the strategy to the JAK-STAT sig-

naling cascade

Multiple modes were detected using a large scale MCMM search with initial con-
ditions based on a log-uniform random sampling between the ranges 10−3 and
102 (N = 10000). After optimization, samples were either accepted or rejected
based on the likelihood ratio bound based on the best fit value. The resulting dis-
tribution and associated WRSS are shown in Figure 3.2. It is clear that there are
at least three local minima in the likelihood. Although all three modes describe
the data adequately, they show different prediction results for the unobserved
internal state variables of the model.

Subsequently, profile likelihood analysis was performed. To increase confi-
dence in the fact that no acceptable regions of parameter space were missed, pro-
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Figure 3.2: Left: Histogram of final parameter values for parameter four post optimization
(bars), and the associated weighted residual sum of squares (dots). Note that all of the
optimized parameter sets shown are acceptable with respect to the LR ratio. Right: Model
predictions from parameter sets taken from location A, B and C for two measured outputs
as well as one unmeasured internal state variable.

file likelihoods were started from each mode detected using the MCMM method
(Step 1). Subsequently all profile likelihoods were merged, followed by checking
whether they covered the full span of acceptable parameter sets obtained from
the MCMM. Based on the profile likelihood, shown in the top panel of Figure
3.3, it can be concluded that the model based on first principles is structurally
non-identifiable [2]. Plotting the parameter sets associated with the structurally
non-identifiable parameters reveals clear relationships between the parameters
(see Figure 3.4). The profiles reveal that the initial condition x0

1 and scaling pa-
rameters s1 and s2 were structurally related and therefore non-identifiable.
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Figure 3.3: Merged profile likelihoods of the JAK-STAT model. Top: Without prior on the
initial condition, Bottom: With prior on the initial condition.

Analogously to [2] a Gaussian prior (µ = 200nM, σ = 20nM) was specified
for the initial condition (which is comparable to assuming that the initial con-
centration was measured with this accuracy). New profiles were subsequently
computed using MAP estimation (by incorporating the prior in the procedure).
In this case, the Gaussian prior constrained both the initial condition as well as
both scaling factors (see Figure 3.3). Additionally, it can be observed that param-
eter two is still practically non-identifiable at a significance level of α = 0.05.

In the case of JAK-STAT, at least three priors are required to render the model
identifiable for all levels of significance. For the initial condition a Gaussian prior
(µ = 200nM, σ = 20nM) was specified while log-uniform priors with support
from 10−8 to 102 and 10−8 to 101.5 were used for parameters p2 and p3. The other
parameters are assigned unbounded log-uniform prior distributions.
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Figure 3.4: Scatter plots of parameters belonging to each profile likelihood

As shown in Figure 3.5, the parameter bounds based on profile likelihood
agree well with those based on the MCMC sampling for the identifiable param-
eters. What can also be observed however is the fact that parameter sets that
would be considered likely based solely on the likelihood of the data can still be
relatively improbable when the prior probability densities are taken into account.
This can be observed for parameter three where the PL path reveals two modes
that are almost equally likely, yet show large difference in terms of probability
density. The posterior parameter distribution does contain a few samples in this
region, but relatively little mass. It is an example of the difference between inte-
gration and maximization and indicates that this region corresponds to a sharp
ridge in the likelihood. The inferred posterior predictive distribution is shown in
Figure 3.6.
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Figure 3.5: Histograms of the posterior distribution. Shown on the diagonal are the
marginal (integrated) distributions of the parameters, where different colours indicate dif-
ferent batches of samples. Off the diagonal are the joint probability distributions between
two parameters. The correlated nature of several parameters can clearly be observed.
Lines indicate profile likelihood trajectories where blue and red corresponds to a good
and bad fit respectively. Note that the profile likelihood includes the prior on the scaling.
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3.6 Discussion

This chapter describes a strategy for reliably inferring posterior distributions and
their predictive counterparts. By classifying different parameters as identifiable
or non-identifiable, it is possible to determine which priors are required to be
sufficiently informative to ensure that the posterior distribution is proper and
can be sampled from. This sampling can subsequently be performed by using an
MCMC sampler which incorporates information regarding the local geometry of
the posterior density. The strategy enables a comprehensive analysis on the effect
of parameter uncertainty on model predictions and enables the modeler to relate
these effects to the model parameters.

Given a sufficient amount of data, inference should be relatively insensitive to
the assumed priors. As observed in the case of JAK-STAT however, it can be seen
that even for a small model, identifiability can be problematic. It is important to
realize that in such cases the choice of priors will strongly affect the outcome of
the analysis. Regarding the posterior predictive distribution, the assumed priors
could be a point of debate. Partial Rank Correlation Coefficient (PRCC) analysis
on the predictions revealed that state variable two had a very strong dependence
on parameter two (see Appendix 3.7.2). This indicates that predictions regarding
state two should be made with care.

Whereas purely likelihood based methods typically revolve around deter-
mining properties of all acceptable parameter sets and their associated predic-
tive counterparts, the Bayesian methodology attempts to provide a probabilistic
assessment of both the parameter and prediction space. The difference between
these two becomes quite clear in the JAK-STAT example, where the probabilistic
assessment assigns more probability to the mode with the larger mass (but lower
likelihood).

Different approaches for prediction uncertainty analysis based on optimiza-
tion are proposed in [15–17]. Such methods are useful for probing consistent
behavior (termed core predictions) among multiple parameter sets, even in the
non-identifiable case. However, they do not result in a probabilistic assessment
of the prediction uncertainty. Probing consistent behavior is also the main focus
of a workflow proposed by [18] for classifying consistent model behaviors and
hypotheses.

Several steps in the proposed approach are computationally challenging and
require many model evaluations. Because of this, model simulation time is a
primary concern. Many packages have been able to attain significant simulation
speed-ups by compiling simulation code, reducing model evaluation time by up
to two orders of magnitude (Potters Wheel [19]; COPASI [20]; Sloppy Cell [21]).
Additionally, new computational platforms such as General Purpose program-
ming on the Graphical Processing Unit (GPGPU) are being explored [22].

In conclusion, the presented strategy enables the modeler to account for pa-
rameter uncertainty when making model predictions. In the case of a fully identi-
fiable model overconfident conclusions that could result from a model described
by a single parameter set can be avoided. Regarding non-identifiable models,
a practical approach can be adopted where the dependence with respect to the
assumed prior distributions can be investigated a posteriori. Though this makes
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3.6 Discussion

computing the posterior distribution feasible, such an approach underestimates
the full uncertainty when the priors are not warranted. Performing the analysis
and obtaining a sample from the posterior takes considerably more computa-
tional effort than determining a single parameter set. However, once such a sam-
ple is obtained, the results can be used for a wide array of model analysis tech-
niques, which more than warrant the additional computational time invested.
Relations within this posterior distribution and its predictive counterpart can be
extracted. The next chapter will go into more detail regarding how these different
relations can actually be used to perform Optimal Experiment Design.
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3.7 Appendix

3.7.1 Merging profiles

Merging different profiles corresponding to the same profiled parameter is per-
formed in the following way. First, a list containing all the parameter values
that were evaluated is constructed. Subsequently, the WRSS of each individual
profile is interpolated for all the points that fall within its bounds. The merged
profile is then obtained by determining the minimum value across the different
interpolated profiles for each of the points in the list.

Figure 3.7 depicts the separate profiles corresponding to the different modes.
Note how the profile shown in solid black fails to leave the local mode for pa-
rameter 4, which would suggest its confidence interval is much smaller than it
really is. This further underlines the necessity of running profiles for each mode
when using local optimization methods.
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Figure 3.7: Separate profile likelihoods for each mode. Sharp discontinuities indicate a
switch between modes. Top: Without prior on the initial condition, Bottom: With prior on
the initial condition.

3.7.2 Prior dependence

In order to test the parameter dependence of the different predictions, a Partial
Rank Correlation Coefficient is calculated. This method performs a linear re-
gression analysis on rank transformed quantities. The PRCC method computes
Pearson correlation coefficients after eliminating the confounding interactions of
all the other parameters. This elimination is performed by means of linear re-
gression models. Consider the PRCC between vectors X and Y, while removing
the effect of vectors Z1..Q. In this case X and Y are regressed against the vectors
in Z and the correlation coefficient is computed on their residuals:

ξX,i = min
β





N

∑
i=1

(

Xi −
Q

∑
j=1

β jZj,i

)2




ξY,i = min
β





N

∑
i=1

(

Yi −
Q

∑
j=1

β jZj,i

)2



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The PRCC between X and Y can be computed as:

ρXY/Z = N
∑

N
i=1 ξX,iξY,i − ∑

N
i=1 ξX,i ∑

N
i=1 ξY,i

√

N ∑
N
i=1 ξ2

X,i −
(

∑
N
i=1 ξX,i

)2
√

N ∑
N
i=1 ξ2

Y,i −
(

∑
N
i=1 ξY,i

)2
(3.9)

The PRCC provides a measure of whether a monotonic relation exists be-
tween the quantities of interest after correcting for all the other variables. The
result of this analysis on the JAK-STAT posterior is shown in Figure 3.8. It is
clear that s2 is strongly rank correlated to the second parameter. Since a prior
distribution was assumed to artificially constrain parameter two, predictions on
s2 should be made with care.
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Figure 3.8: Partial Rank Correlation Coefficients between the state variables and param-
eters. A large absolute value indicates a monotonic relationship between a state variable
and parameter. What can be seen is that parameter two and state variable two are highly
rank correlated.
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4. A Bayesian Approach to Experimental Design

Abstract

Systems biology employs mathematical modeling to further our understanding
of biochemical pathways. Since the amount of experimental data on which the
models are parameterized is often limited, these models exhibit large uncertainty
in both parameters and predictions. Statistical methods can be used to select ex-
periments that will reduce such uncertainty in an optimal manner. However,
existing methods for Optimal Experiment Design (OED) rely on assumptions
that are inappropriate when data is scarce considering model complexity. This
chapter introduces a novel method to perform OED for models that cope with
large parameter uncertainty. The efficacy of new measurements on the uncer-
tainty of selected predictions can be predicted by applying importance sampling
on the Posterior Predictive Distribution. These predicted measurement efficacies
can subsequently be used for selecting an optimal experiment. The proposed
method is demonstrated by applying it to a case where it is shown that specific
combinations of experiments result in more precise predictions.
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4.1 Introduction

4.1 Introduction

In the previous chapters, it was discussed how computational models can be
used to predict (un)measured behavior or system responses and formalize hy-
potheses in a testable manner. Despite the development of new quantitative ex-
perimental techniques, the modeler is often faced with a situation where large
regions of parameter space can describe the measured data to an acceptable
degree [1–5]. Poorly constrained parameters do not necessarily have to be a
problem when the predictions required for testing the hypothesis (which shall
be referred to as predictions of interest) are well constrained [6–10]. However,
when this is not the case, more data will be required. Optimal Experiment De-
sign methods can be used to determine which experiments would be most useful
in order to perform statistical inference. These methods typically involve spec-
ifying an optimality or design criterion and finding the experiment which max-
imizes this criterion. Classical design criteria are often based on linearization
around a best fit parameter set [11] and pertain to effectively constraining the
parameters [12, 13] or predictions [14]. These design criteria have been assigned
different letters of the alphabet as shown in table 4.1. Bayesian analogs to all of
these design criteria exist, which reduce to the same forms when the models are
linear and Gaussian [15].

Optimality Description

A Minimize the average variance of parameter estimates
C Minimize a linear combination of the model parameters
D Maximize determinant of the Fisher information matrix
E Maximize the minimum eigenvalue of the Fisher infor-

mation matrix
T Maximize trace of the information matrix
G Minimize maximum variance over the model predic-

tions
V Minimize average variance of model predictions

Table 4.1: Different optimality criteria for experiment design

However as shown in Chapter 2, methods based on linearizations and Gaus-
sian parameter distributions are not appropriate when data is scarce considering
the model complexity or when the model is strongly non-linear [7]. Addition-
ally, investigators may be interested in what a model predicts for only a small set
of predictions of interest without having to constrain the rest. In such cases, it
makes little sense to optimize for all the predictions or parameters in the model.
This is why a more general framework, free of these approximations, is desired.
In this chapter a method for optimal experiment design is proposed which over-
comes these issues by adopting an approach which exploits the prediction un-
certainties in the model. This method enables the modeler to target experimental
efforts to selectively reduce the uncertainty of predictions of interest. Using the
approach, multiple experiments can be designed simultaneously, revealing po-
tential benefits that arise from specific combinations of experiments.

53



4. A Bayesian Approach to Experimental Design

To perform inference and experiment design, an error model is required. For
ease of notation, the method is demonstrated using a Gaussian error model. Con-
sidering M time series of length N1, N2 ... NM, the following equation is obtained
for the probability density function of the output data:

p(y|~θ) =
M

∏
i=1

Ni

∏
j=1

p(yij,~θ)

= K exp



−
M

∑
i=1

Ni

∑
j=1

(

yij − yi(tj,~θ)√
2σij

)2




(4.1)

Again y represents the noiseless system output, while yij and σij indicate the
mean and standard deviation of a specific data point. K serves as a normaliza-
tion constant. Using Bayes’ theorem and prior distributions for the parameters,
an expression for the posterior probability density of the parameter values can
be obtained [16]. Both computational as well as methodological advances have
made Markov Chain Monte Carlo (MCMC) an attractive option for obtaining
samples from such a distribution [4, 16, 17].

Given a sample of the posterior parameter distribution, predictions can be
made by simulating the model for each of the sampled parameter sets. The
distribution of such predictions shall be referred to as the Posterior Predictive
Distribution (PPD) and reflects their uncertainty. Since all of these predictions
are linked via the parameter distributions, the relations between the different
predictions can be used for experimental design. By considering the effects of a
new measurement on the PPD, it is possible to generate a prediction on the use-
fulness of a future experiment. The method consists of a number of steps which
shall be discussed first. Subsequently the method is demonstrated by applying it
to a case study followed by some concluding remarks.

4.2 Approach

To overcome the limitations of existing OED methods, a sampling based ap-
proach for experimental design is proposed. In brief, the approach consists of
the following steps. First, we sample from the posterior distribution. Using the
sampled parameters, PPDs are simulated for the output of interest and each ex-
periment that can be performed in the lab. Subsequently, based on a measure-
ment uncertainty model, expected variance reductions are computed for various
combinations of experiments. After sampling a large number of potential experi-
ments, these predicted reductions are used to select the optimal (combination of)
experiments.

54



4.2 Approach

Step 1. Sample from the posterior parameter distribution

The first step in the analysis consists of obtaining a sample from the posterior
parameter distribution of the model conditioned on the available data:

p(~θ|yD) ∝ p(yD|~θ)p(~θ) (4.2)

Where p(yD|~θ) denotes the conditional probability of the data given the
model parameters. Here probability reflects a degree of belief and prior
knowledge regarding the parameter values is included in the form of prior

distributions p(~θ). A sample from the posterior distribution is obtained with
Markov Chain Monte Carlo (MCMC) sampling. As a proposal kernel, an
adaptive Gaussian proposal distribution is employed whose covariance matrix
is based on a quadratic approximation to the posterior probability density at the
current sample point [6].

Step 2. Simulate posterior predictive distributions for all candi-
date experiments

A Posterior Predictive Distribution (PPD) is a distribution of new observations
conditioned on the available data as shown in equation (4.3). Samples from the
PPD are obtained by simulating the model (including the addition of measure-
ment noise) for a sample of parameter sets from the posterior parameter distri-
bution. For practical reasons, the addition of the observational noise will be per-
formed in step 3. PPDs are simulated for each candidate experiment and target
quantity. This involves enumerating and simulating each potential experiment
and storing the associated measurable predictions. These PPDs now form a link
between the parameters and different predictions. Since the model and data con-
strain the dynamics of the system, these impose non-trivial relations between the
different predictions. Therefore, the observable quantities of candidate experi-
ments are related to the prediction being targeted. The next step is to exploit the
relations within these distributions for experiment selection.

p(yobs|yD,~ut) =
∫

p(yobs|~θ,~ut)p(~θ|yD)d~θ (4.3)

Step 3. Predict expected variance reductions

To perform experiment design, a measure of expected measurement efficacy is
required. Therefore, the Expected Variance Reduction (EVR) is introduced. Con-
sider an independent new measurement. This new measurement is associated
with an error model G, which reflects the uncertainty associated with the new
experiment. If this new experiment were to be performed, then the subsequent
step would be to incorporate the new data point (and its associated error model)
in the likelihood function and perform inference. This new data would subse-
quently constrain the posterior parameter distribution, hence also affecting the
prediction of interest (which cannot be measured directly). This process is illus-
trated in Figure 4.1.
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Figure 4.1: Illustration of the effect of adding a new data point on the Posterior Predictive
Distribution (PPD). Shown on the top right is the PPD at one specific time point for two
predictions with a subset of the samples of the chain indicated with white dots. The square
denotes the location of the ’new measurement’. Prediction A refers to a prediction of
which a new measurement can be performed (observable), while B denotes the prediction
of interest. Here the gray distribution corresponds to the PPD before the new measure-
ment, while the white Gaussian corresponds to the error model of the new measurement.
Due to additional constraints imposed by this new measurement in combination with the
old data and the model, the distribution on the hypothesis side is also updated in light of
the new data point and shown in white.
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4.2 Approach

Before the experiment is performed, the resulting data point is unknown. The
PPD provides a predictive distribution of the new data point (shown in gray in
Figure 4.1), which also reflects the uncertainty associated with this value. Sam-
ples from the PPD can subsequently be substituted as measured values in the
error model. A distribution of variances can be obtained by repeating this pro-
cess for every Rth point of the MCMC chain. By averaging the result over the
whole chain, the expected variance is implicitly weighted by the distributions of
the candidate observables.

Considering that a single MCMC is often computationally demanding, ap-
proaching this problem by means of a nested MCMC is not tractable. There-
fore an alternative approach is required. Consider the non-normalized densities

p̃(y|~θ), p̃(yn|~θ) and p̃(~θ) respectively corresponding to the density model of the
data used to determine the initial posterior distribution, the density model for
the new data point, and the parameter prior. Assuming that the noise on the

new data point is independent of the existing data points gives pN(~θ|y, yn) ∝

p̃(y|~θ) p̃(yn|~θ) p̃(~θ). From this it follows that the new normalized posterior is
given by:

pN(~θ|y, yn) =
p̃(y|~θ) p̃(yn|~θ) p̃(~θ)

∫

p̃(y|~θ) p̃(yn|~θ) p̃(~θ)d~θ

=
p̃(y|~θ) p̃(~θ)

∫

p̃(y|~θ) p̃(~θ)d~θ

p̃(y|~θ) p̃(yn|~θ) p̃(~θ)

p̃(y|~θ) p̃(~θ)

∫

p̃(y|~θ) p̃(~θ)d~θ
∫

p̃(y|~θ) p̃(yn|~θ) p̃(~θ)d~θ

=p(~θ|y) p̃(yn|~θ)
∫

p̃(y|~θ) p̃(~θ)d~θ
∫

p̃(y|~θ) p̃(yn|~θ) p̃(~θ)d~θ
= p(~θ|y) p̃(yn|~θ)

Z1

Z2

(4.4)

In this equation Z1 and Z2 denote the normalization constants of the old and
new posterior respectively. The proportional relation between the two posteriors
can be used to compute expected values by re-weighting samples from the old
posterior. Rather than running a new MCMC for every sample, Self Normalized
Importance Sampling is used on the predictions of the output in order to com-

pute expected values. This is shown in equation (4.5), where samples ~θi and ~θj

are taken from the old posterior distribution, T indicates the number of MCMC

samples included in the analysis and z(~θ) indicates the quantity of interest.

E~θ|y,yn
[z] =

∫

pN(~θ|y, yn)z(~θ)d~θ =
∫

p(~θ|y) p̃(yn|~θ)
Z1

Z2
z(~θ)d~θ

≈
T

∑
i=1

p̃(yn|~θi)

∑
T
j=1 p̃(yn|~θj)

z(~θi) (4.5)

The value of yn is not known a priori. Therefore, expected values are com-
puted for each parameter set in the PPD sample with yn set to the sampled out-
put prediction. This provides a distribution of expected values for z, where each
sample corresponds to one possible outcome of the experiment. The mean of
these expected values provides a prediction of the quantity of interest averaged
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over the density of the (still unmeasured) data point. The entire approach can
succinctly be summarized as:

Eyn

[

E~θ|y,yn
[z]
]

≈ 1

T

T

∑
r=1

T

∑
i=1

G(t,~u(t),~θi,~θr)

∑
T
k=1 G(t,~u(t),~θk,~θr)

z(t,~u(t),~θi) (4.6)

Here G corresponds to the error model and~θi refers to the ith parameter vector
of the chain. Assuming a Gaussian error model with standard deviation σ for the
new measurement of y, the density G is given by:

G(t,~u(t),~θi,~θr) = exp

(

− 1

2σ2

(

y(t,~u(t),~θi)− y(t,~u(t),~θr)
)2
)

(4.7)

Note that both the input y as well as the output z can be any quantity of
interest (prediction or parameter) indicating the flexibility of the approach. Since
the variance of a variable of interest can be expressed in terms of expected values:

Var[z] = E[z2]− (E[z])2 (4.8)

the aforementioned equation can be used to estimate this quantity. Doing so
allows calculation of a predicted conditional variance for every sample of the
posterior distribution. The variance reductions can then be computed as:

VarR = 1 − σ2
new

σ2
old

(4.9)

where σ2
old corresponds to the posterior variance without the new measure-

ment and σ2
new corresponds to the expected posterior variance with the new mea-

surement(s) taken into account. In other words, one obtains the expected vari-
ance reduction considering the prediction uncertainty. The variance reduction
computed by this sampling method is referred to as the Sampled Variance Re-
duction (SVR).

Implementation of the methodology is straightforward. The measurement
efficacy is computed by weighting samples of the old posterior. This weighted
average then forms a prediction for the situation after the experiment has been
performed. Since the method extensively employs importance sampling, it is im-
portant to consider the quality of these IS estimates (see Appendix 4.6.1). If the
posterior distribution before and after a new experiment is very different, many
of the sample weights will be low and a large fraction of the samples will con-
tribute negligibly to the predicted variance. This degeneracy can be monitored
by estimating the Effective Sample Size (ESS) defined below [18]:

ESSr =

(

∑
N
k=1 G(t,~u(t),~θk,~θr)

)2

∑
N
k=1 G(t,~u(t),~θk,~θr)2

(4.10)
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Measurement noise

New measurements will be affected by noise, which is part of the posterior pre-
dictive distribution. This noise can be simulated when generating samples from
the predictive distributions. In many cases additive Gaussian errors are assumed
as they provide a convenient, and often sufficient description of the measurement
errors involved. An additional advantage is that this removes the requirement
to explicitly simulate the measurement noise since the following identity can be
used:

p(yn|~θ) =
∫ ∞

−∞
Kp(yn|yp)p(yp|~θ)dyp

=
∫ ∞

−∞
K exp



−
(

yn − yp√
2σ

)2

−
(

yp − y(~θ)√
2σ

)2


 dyp

=K
√

πσ2 exp



−
(

yn − y(~θ)

2σ

)2




(4.11)

Here K denotes a normalization constant independent of ~θ. p(yp|θ) is the
posterior probability density of predictions while p(yn|θ) represents the prob-
ability density of observing yn in a new measurement. Furthermore p(yt|yp)
refers to the error model of the new measurement. Since the sampling uses
self-normalization, these constants are irrelevant. From this it follows that in
the Gaussian additive case, the measurement noise can be taken into account by

multiplying the standard deviation of the measurement error by a factor of
√

2.

Linear variance reduction

When the measurement error models and PPD can reasonably be assumed Gaus-
sian, the variance reduction can be estimated using a Gaussian approximation of
the PPD between the output and the measurements of interest. Using this Gaus-
sian approximation, additional measurements hampered by Gaussian additive
errors can be taken into account. First the covariance matrix of the PPDs is com-
puted as:

Σposterior = cov

























z1 x1
1 . . . xQ

1

z2 x1
2 . . . xQ

2
...

...
. . .

...

zT x1
T . . . xQ

T

























(4.12)

Where z denotes the output of interest and xa
b the bth MCMC sample of the

ath measurable state (without measurement noise), with Q and T the number of
measured points and samples respectively. New measurements would be ham-
pered by additive noise whose contribution can be taken into account by either
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explicitly simulating it or, in the case of Gaussian additive noise, adding a diago-
nal matrix containing the noise variances for each of the measurable components.
This noise matrix is given by:

Σnoise =











0 0 . . . 0
0 σ2

1 . . . 0
...

...
. . .

...
0 0 . . . σ2

Q











(4.13)

In the linear case, updates of the covariance matrix do not depend on the
mean of the new measurement and therefore the Gaussian distribution can be
updated by using the Gaussian identity:

C =
(

A−1 + B−1
)−1

(4.14)

The measurement accuracies of the new measurement (also Gaussian) are
given as follows:

Σmeas =











∞ 0 . . . 0
0 σ2

1 . . . 0
...

...
. . .

...
0 0 . . . σ2

Q











−1

=











0 0 . . . 0
0 1/σ2

1 . . . 0
...

...
. . .

...
0 0 . . . 1/σ2

Q











(4.15)

Therefore, the covariance matrix can be updated according to:

Σnew =
(

(

Σposterior + Σnoise

)−1
+ Σmeas

)−1
(4.16)

The resulting variance of the prediction of interest z can then be obtained as
Σnew(1, 1). It is worth noting that this approximation comes at very little compu-
tational cost and does not suffer from sampling degeneracy.

Step 4. Determine experiments with optimal variance reduction

Considering independent measurements, the method can be generalized to mul-
tiple experiments. In this case, the probability density model can be obtained by
multiplying the error models for each candidate measurement. Subsequently,
the space of all candidate measurements is sampled using Monte Carlo sam-
pling. The efficacy of a specific combination of measurements is evaluated by
computing the variance reduction, which is defined as equation (4.9). During this
sampling stage, additional constraints which arise because of practical considera-
tions can be imposed on the experimental design (by rejecting such samples). An
example of this could be the inability to measure certain state variables simulta-
neously. The optimal experiment is obtained by determining those combinations
of measurements which yield the largest predicted variance reduction.
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4.3 Computational methods

4.3 Computational methods

Algorithms were implemented in MATLAB (Natick, MA). Numerical integra-
tion of the differential equations was performed with compiled MEX files using
the numerical integrators for stiff systems from the SUNDIALS CVode package
(Lawrence Livermore National Laboratory, Livermore, CA). Absolute and rela-
tive tolerances were set to 10−8 and 10−9 respectively. The Gaussian proposal
distribution for the MCMC was based on an approximation to the Hessian com-
puted using a Jacobian based on finite differences (H ≈ JT J). All available priors
were included in the Hessian approximation. After convergence, the chain was
thinned to 10000 samples. The Sampled Variance Reduction was computed in
parallel using a MEX-based GPU implementation based on OpenCL.

4.4 Results

To demonstrate the method, it is applied to the STAT signaling pathway model
[1,19] introduced in the previous chapter. To infer the posterior distribution, data
from the paper by Swameye et al [20] were used. Measured quantities were the
total concentration of STAT (x1 + x2 + 2x3) and the total concentration of phos-
phorylated STAT in the cytoplasm (x2 + 2x3), both reported in arbitrary units.
The initial cytoplasmic concentration of STAT is unknown while all other forms
of STAT are assumed zero at the start of the simulation. Given the data, not
all parameters are identifiable [1]. Log-uniform priors were used for the kinetic
parameters and a Gaussian distribution (µ = 200nM, σ = 20nM) for the initial
condition. Parameter two was bounded between ranges, since this parameter
was non-identifiable from the data [1]. Two chains were simulated starting at dif-
ferent initial values. These were simulated up to one million parameter sets and
convergence was assessed by visually inspecting differences between batches of
samples.

4.4.1 Relations present in the Posterior Predictive Distribution

After determining the posterior parameter distribution, PPDs were computed
for all model state variables. An example of a time dependent relation between
predictive densities is shown in Figure 4.2. The second and third column repre-
sent two different snapshots in time. Each dot in the scatter plots corresponds
to the simulated values of two state variables for a single sample of the MCMC
chain. It can be observed that the state variables are related in a highly non-linear
fashion. The associated 2D histograms provide an estimate of the density of these
predictions. It can also be seen that the posterior predictive distribution contains
multiple modes.

Considering state variable three as observable and state variable four as pre-

diction, while assuming a measurement accuracy of σ = 10/
√

2 reveals that a
significant decrease in variance can be attained during the rise of state three.
Measuring state three at the peak value results in a smaller variance reduction.
Considering the relations between the various predictions, the following obser-
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Figure 4.2: Top left: One simulated time course of state 3 superimposed on the PPD. Two
time points are indicated with circles. Bottom left: Correlation Coefficient (CC) between
state 3 and 4 and Sampled Variance Reduction of state 4 based on a measurement of state
3 (SVR). The relation between the two states at the indicated time points is shown in
both a scatter plot as well as a 2D histogram. The former shows the actual samples from
the posterior predictive distribution for one point in time. The dots represent simulated
values corresponding to parameter sets from the MCMC chain. The histogram serves as a
density estimate, where the color indicates the number of samples in a particular region.

vations were made. An experiment is only effective if there is a correlation be-
tween the measurement and the prediction of interest. Additionally, the uncer-
tainty in both should be large enough to result in an appreciable variance reduc-
tion. Since all predictions of state three start with an initial condition of zero, this
implies that the uncertainty at this point is low. Therefore an additional measure-
ment at t = 0 would not yield any variance reduction which is also reflected by
the fact that the Sampled Variance Reduction starts at a value of zero.

4.4.2 Leave one out experiment

To test the method, OED was performed using only a subset of the data. A pos-
terior distribution was computed where most of the data corresponding to the
total amount of cytoplasmic STAT was omitted. Of this observable, only the first
data point was included. Subsequently, MCMCs were performed for each omit-
ted time point. For every MCMC run, only one of the omitted data points was
included, thereby obtaining post-experiment variance reductions. Subsequently,
variance reductions for these same time points were predicted using the pro-
posed SVR method. To ensure that the outcome would be comparable to the
experiments, the standard deviations of the omitted experiments were used as
measurement accuracy. The results of this analysis are shown in Figure 4.3. The
observed variance reductions agree well with the actual reductions obtained.
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Figure 4.3: Expected variance reduction compared with true variance reduction after the
experiment has been performed. The shaded area indicates the 67% Highest Posterior
Density of the distribution of variance reductions obtained, while the solid line indicates
its mean. Variance reductions obtained after including the actual measurement are shown
in circles.

4.4.3 Combinatorial experiment design

In this section, the time to peak of dimerized STAT in the nucleus (state variable
s4) is targeted. A sample from the predictive distribution was computed by deter-
mining the time to peak of s4 for each parameter set sampled from the posterior
parameter distribution. All state variables, except s4 were assumed measurable

with an accuracy of σ = 10/
√

2. The two sums of states as measured in earlier
experiments were also included as potential candidates for new measurements.
The experiment space was sampled using a Monte Carlo approach, uniformly
sampling the experiment design space.

The result of this sampling is shown in Figure 4.4, where the SVR is shown
for several combinations of two measurements. Each axis corresponds to a po-
tential measurement. Different model outputs are separated by grid lines, while
the interval between each pair of lines corresponds to an entire time series. The
color value indicates the SVR for that specific experiment. Recall that the data
set used for inferring the initial posterior distribution contained measurements
of two sums of model states. These two observables correspond to output five
and six in Figure 4.4. The low variance reductions in the area corresponding
to these two observables indicates that additional measurements on output five
and six would provide very little additional information. This is not surprising
since these observables were already measured before. Performing the experi-
mental design for two measurements revealed that the largest reduction in vari-
ance could be obtained by measuring state variable s1 at an early and late time
point. This result underlines the benefit of being able to combine multiple mea-
surements in the OED procedure. Furthermore, the analysis revealed that the
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Figure 4.4: Expected variance reductions (SVR) of the peak time of dimerized STAT (x4)
when performing two new measurements. In the left panel each axis represents an experi-
ment, where the different model outputs are numbered. Numbers one to three correspond
to the first three states while four and five correspond to the sums of states which were
already measured. Each block corresponds to an entire time series. The block correspond-
ing to measurements of state one is enlarged in the right panel.

timing of this first time point is crucial. This also meant that if accurate timing
is not possible in the experiment one could consider measuring state variable
s3 and s1 instead. Here smaller reductions are attained but the timing accuracy
required for a reasonable reduction is less stringent. Since both error models are
Gaussian, we can also compare the results from the SVR with its linearized form,
the LVR. The results of this comparison are shown in Figure 4.5. Qualitatively,
these results agree well.
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Figure 4.5: Variance reduction of the peak time of dimerized STAT (x4) with respect to two
new measurements. Left: Linear Variance Reduction (LVR). Right: Difference between the
variance reduction computed by means of LVR and SVR (see Figure 4.4).

64



4.5 Discussion and concluding remarks

4.5 Discussion and concluding remarks

This chapter described a method to select optimal experiments for reducing the
uncertainty of specific predictions. The method is particularly well-suited to
cases where data is scarce and the posterior parameter distribution cannot rea-
sonably be assumed Gaussian. By applying it to quantities that depend non-
linearly on model simulations, we have demonstrated that the method is flexible.
These particular characteristics make it well suited to Systems Biology research.

For an experiment to be effective, the variables under consideration need to
be correlated as well as show sufficient uncertainty in their posterior predictive
distribution. In this work, the timing of the new measurement was assumed
instantaneous (infinitely accurate). It remains an open but relevant challenge to
incorporate temporal inaccuracies in the current framework. It is expected that
when timing is more error prone and explicitly accounted for, experiments that
are only effective during brief time intervals will be marked less beneficial.

In this framework, the selection of an experimental design is based on the ex-
pected value of a distribution of predicted variance reductions. Though basing
the design on the expected variance reduction makes sense from a probabilistic
point of view, other options could be considered. Since a distribution of potential
variance reductions is inferred and has been computed, one could also consider
incorporating information regarding the accuracy of this estimate into the selec-
tion process. As demonstrated in the leave-one-out experiment it is possible to
compute credible intervals on the predicted variances. Such intervals can be in-
corporated in the decision making process. Finding a sensible trade-off between
the expected variance reduction and its inaccuracy remains an open topic for
further research.

To obtain the posterior distribution, the parameters are required to be either
identifiable or restricted by means of a finite prior distribution. Even for a small
model, identifiability can be problematic but easily tested [1]. Given a sufficient
amount of data, the posterior distribution should be relatively insensitive to the
assumed priors. It is important to verify this a posteriori. One option to inves-
tigate prior dependence is to vary the assumed priors or determine the effect
of a measurement on the quantity that the assumed prior represents. The latter
option strongly depends on the initial prior, which should be chosen sufficiently
wide to cover all potential parameter regimes.

The method is not limited to any specific family of distributions for the pa-
rameters and model predictions. However, strongly tailed distributions can be
problematic. Such distributions can lead to unreliable variance estimates due to
undersampling the tail of the distribution. Additionally, variances of such dis-
tributions are difficult to interpret, as the tail generally dominates the variance
estimate. Therefore, it is sensible to visually inspect the actual predictive distri-
butions of the optimal design. Since the number of samples required to get a
reliable variance estimate is problem specific, it is recommended to monitor the
ESS. Additionally, refer to Chapter 7 for a suitable bias correction for low ESS.

Obtaining samples from the PPD and performing the experimental design is
computationally expensive. Regarding inference, model simulation time is a pri-
mary concern which can be significantly reduced by using compiled simulation
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code (see COPASI [21]; ABC-SysBio [22]; Potters Wheel [23]; Sloppy Cell [24]).
Additionally, more efficient sampling methods for obtaining posterior distribu-
tions in high dimensional spaces are being developed [4, 19]. Regarding the ex-
periment design, the computational burden can be divided into two contribu-
tions. First is sampling the experiment space. Since each experiment constitutes
a dimension in experiment space, densely sampling this space for a large num-
ber of experiments can become prohibitively time consuming. When designing
several experiments simultaneously, it may be required to resort to more sophis-
ticated sampling techniques such as Sequential Monte Carlo methods. In many
cases, it is beneficial to perform a fast initial sweep of the experiment space by
sampling the LVR. This can then be followed up by computing the actual SVR for
those samples that resulted in an appreciable LVR. Finally, profiling the resam-
pling step revealed that the distance calculations for the error model were most
time consuming. Since this step exhibits a large degree of parallelism, a GPU
OpenCL implementation of the resampling step was implemented. Even on a
modest GPU (NVIDIA Quadro FX 580) this resulted in a considerable speedup
(see Appendix 4.6.2).

A flexible data-based strategy for optimal experiment design was proposed.
Where existing design criteria pertain to effectively constraining specific param-
eters or target the variance of predictions using model linearization [12–14], this
method is not limited to any specific error models or assumptions regarding the
parameter distributions. It enables the modeler to select specific predictions of
interest that require decreased uncertainty and thereby focuses the experimental
efforts towards specific predictive goals. Furthermore, it allows the prediction
of interest to be any quantity that can be obtained from simulations and enables
the inclusion of multiple different measurements simultaneously in order to elu-
cidate their combinatorial efficacy.
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4.6 Appendix

4.6.1 Sampling bias

Consider performing a new measurement as illustrated in Figure 4.1. The es-
timation of the measurement efficacy involves multiplying samples of the old
posterior with weights to estimate quantities that resemble the situation after
the experiment has been performed. When computing such a weighted average,
it is important to keep track of the quality of the estimation. When the poste-
rior before and after a new experiment is very different, many of these sample
weights will be very low and a large fraction of the samples will contribute only
negligibly to the estimation of the new variance. This degeneracy is monitored
by estimating the Effective Sample Size (ESS).

When the importance sampling distribution is similar to the new posterior,
the ESS should scale linearly with the number of included samples. When the
values for the ESS are very low then values obtained for the variance reduction
can be inaccurate. Since every point of the MCMC is treated as a potential mea-
surement result, this also includes samples farther from the high density region
of the posterior. Since the density of samples is lower here, the number of sam-
ples that significantly contribute to the new posterior variance estimate is small.
In the most extreme case (consider the outermost sample), the expected mean,
after incorporating the new measurement, would be biased towards the high
density region, while the variance would be underestimated. This worst case
scenario is illustrated in Figure 4.6 for a 1D distribution.

Since the aim is not to estimate a single variance, but rather compute an ex-
pected value for an entire distribution of variances, this problem is mitigated
somewhat. Considering that most of the weighting will take place in the high
density region, the estimation error will be reasonable for most samples. It is
expected that the method will show slight bias for low numbers of included sam-
ples, but that the bias will quickly decrease as the sample size increases. Several
factors play a role in this sampling. The number of points included in the sam-
pling step, the dimensionality of the problem, the difference between the vari-
ance of the posterior and the new measurement, and, the amount of correlation
between measurement and quantity of interest. The bias during the sampling
step was investigated by performing tests using multidimensional Gaussians.
One example of such a test is shown in Figure 4.7. Here, it can be observed that
the bias of the sampling approach is indeed more pronounced for smaller sample
sizes. Interestingly, low correlations (associated with low variance reductions)
result in slightly more bias. For low ESS, this could potentially produce false
positives, therefore this prompted investigation into a bias correction which is
derived in Chapter 7. Note however, that the linear method is unbiased, even
at low sample sizes. This linearized version depends on the assumption that
the PPD is Gaussian however, an assumption which in this experiment holds by
design, but is questionable for real PPDs.

The effect of varying the different variances was investigated. There are three
variances that play a role. The variance of the old posterior, on the side of the
quantity of interest, the variance of the posterior where the measurement will
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Figure 4.6: Illustration of the effect of a new datapoint on the Posterior Predictive Distri-
bution (PPD). The stems indicate different samples obtained using MCMC. The sample
currently under consideration as the new experimental value obtained from the measure-
ment is denoted with a star. The lines correspond to the different distributions based
on computed means and variances. Shown are the posterior before incorporating the new
datapoint (solid line), the distribution of the measurement (dashed), the distribution based
on the true mean and variance of the new posterior (circles) and the distribution based on
the mean and variance estimated from resampling as performed in the proposed method
(triangles)

take place, and the variance associated with the uncertainty of the new measure-
ment. To investigate these in the non-linear case, an analysis on a 2D banana
function was performed. The residual vector used in this analysis was defined
as:

~r(~x) =
[√

10
(

x2 − x2
1

)

,
√

2 − x1

]

(4.17)

with parameters x1 and x2. The associated density function was defined as:

C(~x) = eΣir
2
i (4.18)

Here, the variances for each sample of the MCMC chain were computed in
two ways. First by means of running a new MCMC for each sample of the pre-
vious posterior. In this way, we simulate the outcome of future experiments. To
test our methodology, we subsequently use the same posterior to predict these
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Figure 4.7: Estimated variance reduction as a function of the number of points included in
the analysis. The PPD was modeled by a multivariate Gaussian distribution with output
variance 5 and observation variances 4 and 3. The measurement accuracy of the new mea-
surement was assumed to be Gaussian with variance 1. All correlation coefficients were
set to the same value. Each experiment was repeated 50 times. Shown in gray, black and
light gray are the mean variance reductions based on sampling, the linear approximation
(which is exact for a Gaussian) and the true analytical solution. Dashed lines indicate
95 percentile bounds. Figure titles indicate used correlation and estimated slope of the
Effective Sample Size as a function of the number of sample points.

variances using self normalized importance sampling. The results are shown in
Figure 4.8. Although the high and low values differ, the majority of the estimated
variances agree well and the mean is still well estimated (see Figure 4.9).

In this chapter, we relied on the ESS being high enough for reliable estimation.
When the ESS becomes very small (NESS < 50), bias can occur and expected
variances can be underestimated. Interestingly, this is more of an issue in the
case where no correlation exists. See Chapter 7 for a bias correction for cases
where a low ESS is unavoidable.
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Figure 4.8: Comparison of nested MCMC approach to resampling technique for the ba-
nana function. Shown are estimates for the variance based on an MCMC for each sample
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4.6.2 OpenCL implementation

Profiling the targeted experiment design code revealed that the biggest compu-
tational burden was the computation of distances between the particles (even in
the fully vectorized case). Since this computation is identical for all particles,
this could straightforwardly be outsourced to hardware designed for parallel
processing. OpenCL was used to outsource these calculations to the Graphical
Processing Unit (GPU), taking advantage of the parallel processing capabilities
of this device. OpenCL was linked against a MEX file to run the method from
MATLAB. In brief, working with OpenCL involves writing kernels, which are
functions that execute on OpenCL enabled devices. These kernels are compiled
at run-time by the graphics driver, which incurs additional overhead. To avoid
the overhead of having to build the OpenCL code into GPU binaries at each eval-
uation, the binary code coming from the graphics driver is returned as an output
variable to MATLAB. The resulting binary is passed as an input for subsequent
calls to the function. GPU devices have different types of memory, which trans-
fer information at different speeds. Global memory is slow, but useful for large
amounts of data. Local registers are fast, but using more local memory restricts
the number of threads that can be executed in parallel. In our implementation,
the sequence of samples is stored in global memory, while all the computations
are performed using local registers. This OpenCL implementation resulted in
considerable speedups even on modest graphics hardware (see Figure 4.10).
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Figure 4.10: Comparison of the vectorized MATLAB implementation (black) and paral-
lelized OpenCL implementation (gray).
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Abstract

Mathematical modeling is often used to formalize hypotheses on how a biochem-
ical network operates. By discriminating between competing models, different
hypotheses can be compared. Bayesian model selection offers a way to determine
the amount of evidence that data provides to support one model over the other
while favoring simple models. In practice, the amount of experimental data is
often insufficient to make a clear distinction between competing models. Often,
one would like to perform a new experiment to discriminate between competing
hypotheses.

This chapter presents a novel method to perform Optimal Experiment Design
to predict which experiments would most effectively allow model selection. The
method is based on a k-Nearest Neighbor estimate of the Jensen-Shannon diver-
gence between the multivariate predictive densities of the competing models.
The proposed method is evaluated by comparing its outcome to the change in
Bayes Factor upon performing the experiments. By applying the method to a
few test cases, we show that the method successfully uses predictive differences
to enable model selection. Because the design criterion is based on predictive
distributions and such distributions can be computed for a wide range of model
quantities, the approach is very flexible. The method reveals specific combina-
tions of experiments which improve discriminability, even in cases where data is
scarce.
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5.1 Introduction

Developing computational models of biochemical networks is complicated by
the complexity of their interaction mechanisms [1–8]. Typically, hypotheses on
how the system operates are formalized in the form of computational models
[9–12]. These models are subsequently calibrated to experimental data using in-
ferential techniques [13–19]. In the previous chapters, we focused on performing
uncertainty analysis and experiment design considering only a single model. Of-
ten, many alternative models for the same system exist. Gathering sufficient data
to draw a distinction between multiple competing models is a challenging task.
Often, the uncertainty associated with the predictions hinders the investigator
on making a clear distinction between competing models [20–22]. In such cases,
additional data is required. Optimal Experiment Design (OED) methods can be
used to determine which experiments would be most useful [23]. Existing meth-
ods for performing OED aimed at model selection are usually based on best pa-
rameter estimates [24–26] or model linearization [27], which are not appropriate
when data is scarce with respect to model complexity [28].

In this work, we employ a Bayesian approach using the Posterior Predic-
tive Distribution (PPD), which directly reflects the prediction uncertainty and
accounts for model non-linearity and non-Gaussianity of the parameter distri-
bution. Samples from the PPD can be obtained by drawing from the posterior
parameter probability distribution and simulating predictions for each parame-
ter set. By simulating a sample from the PPDs for all experimentally accessible
moieties and fluxes, differences between models can be explored [29]. Previously,
predictive distributions have been used to perform experiment design targeted
at reducing the uncertainty of specific predictions [30, 31]. Here, we address the
problem of ranking multiple models and present a method which uses samples
from these predictive distributions to choose experiments useful for model selec-
tion.

In a Bayesian setting, model selection is typically based on the Bayes factor,
which measures the amount of evidence data provides for one model over an-
other [32, 33]. For every pair of models, a Bayes factor can be computed, defined
as the ratio of their integrated likelihoods. One advantage of the Bayes factor
is that it automatically penalizes unnecessary model complexity in light of the
experimental data, whereby it reduces the risk of unwarranted model rejections.
This penalization occurs because more parameters or unnecessarily wide priors
lead to a lower weighting of the high likelihood region. This is illustrated in
Figure 5.1. What the Bayesian model selection methodology does not provide,
however, is a means to determine which experiments would optimally increase
the separation between models.

Determining which measurements to perform in order to optimally increase
the Bayes factor in favor of the correct model is a difficult task. We propose
a method which allows ranking combinations of new experiments with respect
to their efficacy at increasing the Bayes factor in favor of the correct model. Pre-
dictions whose distributions do not overlap between competing models are good
measurement candidates [34,35]. Often distributions for a single prediction show
a large degree of overlap, hampering a decisive outcome. PPDs also contain
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Figure 5.1: Three different examples of integrated likelihoods. Left: Integrated likelihood
under wide priors. The mismatch of the prior with respect to the high likelihood region
results in low weights for the high likelihood region and therefore low model evidence.
This situation is comparable to a case where the model contains too many parameters.
A surplus of model parameters leads to a larger parameter space and therefore lower
prior probability in the high likelihood region, thus implicitly penalizing complexity not
warranted by the data. Middle: A close match between prior and likelihood. Right: A
model and prior which do not have sufficient freedom to describe the data very well as
evidenced by the low prior probability in the high likelihood region.

information on how model predictions are related to each other. The relations
between the different prediction uncertainties depend on both the data and the
model. Differences in these inter-prediction relations between competing mod-
els can be probed and used (see Figure 5.2). We quantify these differences in
predictive distributions by means of the Jensen-Shannon divergence (JSD).

We argue that by measuring those time points at which the models show
the largest difference in their predictive distributions, large improvements in the
Bayes factors can be obtained. By first applying the methodology on an analyt-
ical model it is shown that the JSD is nearly monotonically related to the pre-
dicted change in Bayes factor. Subsequently, the Jensen-Shannon divergence is
computed between predictions of a non-linear biochemical network. Since each
model implies different relations between the predictive distributions, certain
combinations of predictions lead to more discriminability than others. The JSD
serves as a good predictor for effective experiments when we compare it to the
Bayes factors obtained after the measurements have been performed. The ap-
proach can be used to design multiple experiments simultaneously, revealing
benefits that arise from combinations of experiments.

5.2 Methods

Consider biochemical networks that can be modeled using a system of ordi-

nary differential equations. These models comprise of equations ~f (~x(t),~u(t),~p),
which contain parameters ~p (constant in time), inputs ~u(t), and state variables
~x(t). Given a set of parameters, inputs, and initial conditions ~x(0), these equa-
tions can be simulated. Measurements ~y(t) are performed on a subset and/or a
combination of the total number of state variables in the model. Measurements
are hampered by measurement noise ~ε while many techniques used in biology
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Figure 5.2: An illustrative example of how different models can imply different relations
between predictions. On the top right are the 67% (dashed) and 95% (solid) probability
contours of the joint probability density function of model M1 and M2, while the other
two panels show the distribution of that specific prediction. Note how measuring one
of the two predictions would yield no additional discriminatory power while measuring
both predictions would.
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(e.g. Western Blotting) necessitate the use of scaling and offset parameters ~q [36].

The vector ~θ is defined as ~θ = {~p,~q,~x0}, which lists all the required quantities to
simulate the model. To perform inference and experiment design an error model
is required. Considering R time series of length N1, N2 ... NR hampered by such
noise, one obtains the following equation for the probability density function of
the output data:

p(yD|~θ, Mi) =
R

∏
k=1

Nk

∏
j=1

p(yD
k (tj),~θ, Mi) (5.1)

Here Mi indicates a model, the parameters are given by ~θ, while yD
k (tj) indi-

cates the value of a data point of state variable k at time j. By specifying prior
distributions of the parameters and applying Bayes rule, it is possible to define
a posterior distribution over the parameters. After checking maximum a posteri-
ori identifiability, a sample from the posterior distribution of parameters can be
obtained using Markov Chain Monte Carlo [22, 29, 37]. This sample reflects the
uncertainty associated with the parameter values and can be used to simulate
different predictions. Posterior Predictive Distributions (PPDs) are defined as
distributions of new observations, conditioned on the available data. A sample
from these predictive distributions can be obtained by simulating the model for
each of the parameter sets drawn from the posterior parameter distribution and
adding noise generated by the associated error model. The latter is required since
future observations will also be affected by noise.

5.2.1 Model selection

In a Bayesian setting, model selection is often performed using the Bayes Fac-
tor [32, 38, 39]. This pivotal quantity in Bayesian model selection expresses the
change of relative belief in both models after observing experimental data. By
applying Bayes rule to the problem of assigning model probabilities we obtain:

P(M|yD) =
P(yD|M)P(M)

P(yD)
(5.2)

Here, P(M|yD) represents the probability of model M given observed data
yD, while P(M) and P(yD) are the prior probabilities of the model and data, re-
spectively. Rather than explicitly computing the model probability, one usually
considers ratios of model probabilities, allowing direct comparison between dif-
ferent models. As the prior model probability can be specified a priori (equal if no
preference is given), the only quantity that still requires evaluation is P(yD|M),
which can be obtained by integrating the likelihood function over the parame-
ters:

p(yD|M) =
∫

Ω
p(yD|M,~θM)p(~θM|M)d~θM (5.3)
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The Bayes factor is actually the ratio of these integrated (also named marginal
or marginalized) likelihoods and is defined as:

B12 =
p(yD|M1)

p(yD|M2)
=

∫

Ω
p(yD|M1,~θM1

)p(~θM1
|M1)d~θM1

∫

Ω
p(yD|M2,~θM2

)p(~θM2
|M2)d~θM2

(5.4)

where M1 and M2 refer to the different models under consideration. One ad-
vantage of the Bayes factor is that it automatically penalizes unnecessary model
complexity in light of the experimental data (hereby reducing the risk of unwar-
ranted model rejections). This penalization occurs because more parameters, or
unnecessarily wide priors, lead to a relatively lower weighting of the high like-
lihood region, and therefore a lower value for the integrated likelihood. This is
illustrated in Figure 5.1.

Bounds can be defined where the Bayes factor value becomes decisive for one
model over the other. Typically, a ratio of 100 : 1 is considered decisive [32, 40].
Computing the required marginal likelihoods is challenging for non-linear prob-
lems where asymptotic approximations to the posterior distribution are not ap-
propriate. Here, one is forced to use more advanced methods such as thermo-
dynamic integration (see Appendix 5.6.1) or annealed importance sampling [32].
Though the Bayes factor is indeed a useful method for model selection, determin-
ing what to measure in order to improve the Bayes factor in favor of the correct
model is a non-trivial problem. As such, it provides a means to perform model
selection, but not experiment design.

5.2.2 Experimental design

Our approach is based on selecting measurements which provide the largest dis-
criminatory power between competing models in terms of their predictive dis-
tributions and thereby maximally inform our model comparison. This discrimi-
natory power is quantified by means of the Jensen-Shannon divergence (JSD), as
it provides a measure of dissimilarity between the probability density functions.
It is defined as the averaged Kullback-Leibler divergence between probability
distributions and their mixture:

DJS =
K

∑
i=1

p(Mi)DKL

(

p(y|Mi),
K

∑
i=1

p(Mi)p(y|Mi)

)

(5.5)

Here, K represents the number of probability densities, p(Mi) the (prior)
probability of model Mi and p(y|Mi) the PPD of model Mi. This metric is mono-
tonically related to an upper and lower bound of the classification error rate in
clustering problems [41, 42] and is bounded between 0 and 1. In the case where
the model that generated the data is in the set of competing models, it is analo-
gous to the mutual information between a new measurement (or sample) coming
from a mixture of the candidate models and a model classifier (see Appendix
5.6.2). Mutual information has been considered before in the context of experi-
mental design for constraining predictions or parameters of interest [30], but not
in the setting of model selection. Though appealing for its properties, estimating
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the Jensen-Shannon divergence for one or more experiments requires integration
over the predictive densities since:

DKL(P, Q) =
∫

X
p(x) log2

(

p(x)

q(x)

)

dx (5.6)

Here P and Q are defined as random variables with p and q their associated
densities. Considering that only a sample of the PPDs is available, it is required
to obtain a density estimate suitable for integration. Density estimation can be
approached in two ways: by Kernel Density Estimation (KDE), or by k-Nearest
Neighbor (kNN) density estimation. In Kernel Density Estimation (KDE), an
estimate of the density is made by centering a normalized kernel with bandwidth
h on each sample and computing the weighted average:

p(~θ) =
1

Nh

N

∑
i=1

K

(

~θ −~θi

h

)

(5.7)

This process subsequently provides a density for all the samples with which
the relevant computations can be performed. These kernels typically have a
bandwidth parameter (here denoted by h) which is estimated by means of cross
validation [43, 44]. A large h will result in a loss of resolution, while a small h
results in larger variances. For well behaved, low dimensional distributions with
fairly uniform density, KDE is often employed and performs well. Considering
the strongly non-linear nature of both the parameter and predictive distributions,
a Gaussian kernel with constant covariance is not appropriate. As the number of
dimensions of the problem increase, more and more weights in the KDE become
small and estimation accuracy is negatively affected [45]. Additionally, cross-
validation is a computationally expensive procedure to perform for each experi-
mental candidate.

With k-Nearest Neighbor (kNN) density estimation, density is estimated by
computing the volume required to include the k nearest neighbors of the current
sample [44–46]:

p(~θ) =
1

N

k

ρk(~θ)dvd

(5.8)

In this equation ρk(~θ) represents the distance to the kth nearest neighbor, d the
number of dimensions and vd the volume of the unit ball in R

d. Furthermore, N
denotes the number of included samples and vd is given by:

vd =
πd/2

Γ(d/2 + 1)
(5.9)

Here, Γ corresponds to the Gamma function. The advantage of using the kNN
estimate is that this estimator adapts to the (local) sampling density, adjusting its

volume where sampling is sparse (see Appendix 5.6.3). Consider ~y
Mi
j , a vector of

predictions simulated with model Mi and parameter set ~θj, where each element
of the vector corresponds to a different model prediction. A model prediction is
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defined as a quantity which can be computed by supplying model Mi with pa-

rameter set~θj (e.g. a predicted value at a certain time point, a difference between
predictions or an area under some predicted curve). As these predictions will be
considered as potential measurements, these should typically be quantities that
could potentially be measured directly. The set of these vectors of predicted val-
ues coming from model Mi shall be referred to as ΩMi

. Inserting these quantities,
the kNN estimate of the JSD becomes:

Djs =
1

2NM1

NM1

∑
i=1

log2







2NM2
rk

(

~yM1

i , ΩM2

)d

NM2
rk

(

~yM1

i , ΩM2

)d
+ (NM1

− 1)rk

(

~yM1

i , ΩM1\~yM1

i

)d







+
1

2NM2

NM2

∑
i=1

log2







2NM1
rk

(

~yM2

i , ΩM1

)d

NM1
rk

(

~yM2

i , ΩM1

)d
+ (NM2

− 1)rk

(

~yM2

i , ΩM2\~yM2

i

)d







(5.10)

Here, d corresponds to the number of elements in ~y
Mi
j (the number of pre-

dictions included), and rk

(

xi, ΩMj

)

corresponds to the Euclidean distance to the

kth nearest neighbor of xi in ΩMj
. Note that the backslash indicates excluding

an element from the set. This equation provides the JSD for one combination of
experiments. Using this equation, the JSD can then be computed for all possible

combinations of experiments by assembling different vectors of predictions ~y
Mi
j .

These JSD estimates can then be used to rank how well these experiments would
discriminate between the models. A larger value for the JSD indicates a more
informative experiment. The final step involves sampling several combinations
of measurements and determining the set of experiments which have the largest
JSD. The complete methodology is depicted in Figure 5.3.
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5.2.3 Numerical experiments

To show the applicability of the method, a series of simulation studies are per-
formed. Since in this case, it is known by design which model generated the data,
it is possible to compare to the Bayes factor pointing to the correct model. After
generating an initial data set using the true model, the PPDs for each of the com-
peting models are sampled. Subsequently, these predictions are used to compute
JSD estimates between the different models. To test whether the JSD estimate can
be used to compare different potential experiments, the new experimental data
is subsequently included and the JSD compared to the change in Bayes factor
in favor of the correct model. A large change in Bayes factor indicates a useful
experiment.

Analytical models

First, we apply the method to a number of linear regression models. Linear re-
gression models are models of the form:

y(t) =
L

∑
i=1

θiBi(t) + ε (5.11)

Here, ~θ represents a parameter vector and B constitutes a design matrix with
basis functions Bi(t). Since these models are linear in the parameters, this allows
evaluation of an analytical solution. Given that σ is known, the prior distribu-
tion over the parameters is a Gaussian with standard deviation ξ, the mean and
covariance matrix of the posterior distribution are given by:

µ =

(

BTB +
σ2

ξ2
I

)−1

BTy

Σ = σ2

(

BTB +
σ2

ξ2
I

)−1
(5.12)

Furthermore, the marginal likelihood p(y|M) used to compute the Bayes fac-
tor can be computed analytically as:

(2π)−
m
2 |Ω|− 1

2 e−
1
2 yT

Ω
−1y (5.13)

with

Ω = σ2I + ξ2BBT (5.14)

Using linear models avoids the difficult numerical integration commonly re-
quired to compute the Bayes factor and makes it possible to perform overarching
Monte Carlo studies on how these Bayes factors adjust upon including new ex-
perimental data. The analytical expressions make it possible to compare the JSD
to distributions of the actual Bayes factors for model selection.
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5.2.4 Non-linear biochemical networks

A series of artificial models based on motifs often observed in signaling sys-
tems [47, 48] were implemented (see Appendix 5.6.4 for the model equations).
Artificial data was simulated for M1 and subsequently inference was performed
for all four competing topologies. The difference between each of the models was
the origin and point of action of the feedback mechanism (see Figure 5.4).
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Figure 5.4: Artificial models used to test the method. The dashed lines indicate the differ-
ent hypotheses regarding the negative feedback mechanisms in each of the models. Here
feedback 1 corresponds to the true data generating model. Data of Bp and Dp was used
for inference. Here p refers to a phosphorylated species.

Each of the artificial models was able to describe the measured data to an
acceptable degree. For the prior distributions on the parameters, a Gamma dis-
tribution with α = 1 and β = 3 was used. This prior is relatively non-informative
(allowing a large range of parameter values) while not being so vague that the
simplest model is always preferred (Lindley’s paradox). The true data was sim-
ulated using M1. Observables were Bp, of which three replicates were mea-
sured, and Dp, of which two replicates were measured. These were measured at
t = [0, 2, 5, 10, 20, 40, 60, 100]. All replicates were simulated with additive Gaus-
sian white noise with a standard deviation of 0.03. The parameter values corre-
sponding to the true system were obtained by running Monte Carlo simulations
until a visible overshoot above the noise level was observed. Parameter infer-
ence was performed using population MCMC with the noise variance σ2 as a
free parameter. Bayes factors were computed using thermodynamic integration
(see Appendix 5.6.1).
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5.3 Implementational details

All algorithms were implemented in MATLAB (Natick, MA). Numerical integra-
tion of the differential equations was performed with compiled MEX files using
numerical integrators from the SUNDIALS CVode package (Lawrence Livermore
National Laboratory, Livermore, CA). Absolute and relative tolerances were set
to 10−8 and 10−9. MCMC was performed using a population MCMC approach

using NT = 40 chains with a temperature schedule given by Tn =
(

NT
n

)4
. This

permitted usage of thermodynamic integration to compute the Bayes factors be-
tween the non-linear models. The Gaussian proposal distribution for the MCMC
was based on a Hessian approximation using a Jacobian obtained by simulat-
ing the sensitivity equations. After convergence, the chain was thinned to 10000
samples. Since the number of experiments designed simultaneously (and there-
fore the number of elements of each prediction vector) was reasonably small
(Nsamples >> 2k), the kNN search was performed using k-d trees. The figures
in this paper were determined using k = 10.

5.4 Results

5.4.1 Analytically tractable models A

A series of experiments were performed using linear regression models. To
demonstrate the method, consider the following four competing models, where
model three is used to generate the data:

yM1
= θ1t

yM2
= θ1t + θ2t2

yM3
= θ1t + θ2t2 + θ3sin

(

1

5
t3

)

yM4
= θ1t + θ2t2 + θ3sin

(

1

5
t3

)

+ θ4sin (2t) t

(5.15)

The presence of sine waves in M3 and M4 elicits particularly noticeable pat-
terns in the optimal experiment design matrices. Using M3, D equidistantly sam-
pled time points were generated as data (including Gaussian additive noise σ).
To make sure that the model selection was unsuccessful a priori, these were sam-
pled in a region where the models roughly predict the same behavior. Initially,
the Bayes factors were log10(B13) = 2.0439 (decisive), log10(B23) = −0.0554
(pointing to the wrong model) and log10(B43) = 0.4658 (not worth more than a
bare mention). PPDs were generated for each of the models and used to compute
credible predictive intervals that enclose 95% of the predictive density. The aim
of the design is to successfully select between the models after performing new
experiments. Since the outcome of the experiment is not known a priori, samples
from predictive distributions are used to compute an expected change in Bayes
factor. For each sample of the predictive distribution, the change in Bayes factor
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Figure 5.5: Comparing the Jensen-Shannon Divergence to the Bayes factor updates. Top
row: Bayes factor change in favor of the correct model with associated credible intervals
for two predictions. Second row: Jensen-Shannon divergence between the relevant Posterior
Predictive Distributions. Bottom row: Relation between the Bayes factor updates and the
JSD.

in favor of the true underlying model is computed. Hence this procedure results
in a distribution of Bayes factors.

∆(Bab) := EyD
n

[

log10

(

p(yD, yD
n |Ma)

p(yD, yD
n |Mb)

)]

− log10

(

p(yD|Ma)

p(yD|Mb)

)

(5.16)

Here, the expectation is taken with respect to new realizations of the data
yD

n . Predicted experimental data are simulated in two ways. Either by using the
correct model with the true parameter values and adding measurement noise,
which shall be referred to as ∆BT

ab. Or by generating samples from the posterior

predictive distribution of the correct model (∆BB
ab), where the B stands for current

state of belief. The change in Bayes factor (in favor of the correct model) was
compared to the Jensen-Shannon divergence between the posterior predictive
distributions of competing models. Large predicted changes indicate that the
experiment would result in a successful selection. As for the JSD, a large value
indicates a large divergence between the joint predictive distributions, marking
the measurement as useful. See Figure 5.6 for an example of the analysis results.

The JSD agrees well with the actual Bayes factor updates when considering
the current state of belief BB

ab as shown in Figure 5.6. Interestingly, all the de-
signs with a high JSD are effective for discriminating between the true model
and its competitors without having to specify a true model a priori. The patterns
that arise in the matrix of combinatorial efficacies are different depending on
how the predictive samples were generated. In reality, the parameter values of
the true model are not known. If the uncertainty currently associated with the
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Figure 5.6: Comparing the Jensen-Shannon Divergence to the Bayes factor updates for re-
gression models. Top row: Blue lines indicate the ’true’ system response. Dashed lines in-
dicate the credible intervals of the Posterior Predictive Distribution for that specific model.
The red line indicates the data incorporated prior to the analysis. Second row: Bayes fac-
tor change for the support over model 3 over the model corresponding to that column
after incorporating two datapoints simulated from the posterior distribution of model
true (average of 100 repetitions of this simulated experiment). Third row: Bayes factor
change for the support over model 3 over the model corresponding to that column after
incorporating two datapoints simulated with the model true with the true parameters
(average of 100 repetitions of this simulated experiment). Bottom row: Jensen-Shannon
Divergence between the Posterior Predictive Distributions of Model 3 and the model that
column number corresponds to. Note that the graphs for model 3 are black by definition.
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parameters is taken into account (by simulating from the PPD rather than true
model plus noise), then the efficacy matrix seen in the second row of Figure 5.6
is obtained. Knowing the true parameter value breaks the symmetry (see the
third row of Figure 5.6). This makes sense, since the simulation corresponding
to the true parameters falls within all the PPDs for negative t, and outside of the
PPDs for positive t. In practice, the true parameter values are not known and
the estimate based on the posterior samples provides the best possible estimate
that can be attained considering the current parameter uncertainty. Plotting the
relationship between the updated Bayes factors BB

ab upon a new experiment and
the corresponding JSD typically reveals a monotonic relationship that underlines
its usefulness as a design criterion (see Figure 5.5 for two typical examples).

5.4.2 Analytically tractable models B

Subsequently, a Monte Carlo study was performed where a large number of
models were randomly generated from basis functions and compared. Consider
linear models constructed from the following basis functions:

c1(t) = t

c2(t) = (.25t)2

c3(t) = (.1t)3

c4(t) = sin(αt2)

c5(t) = e−|βt2|

c6(t) = sin(γt3)

α ∝ U[.1, .6]

β ∝ U[.05, .1]

γ ∝ U[.1, .6]

(5.17)

Here U[a, b] indicates a sample from a uniform distribution between a and b
which is drawn upon basis function construction. Regression models are assem-
bled from these components by shuffling these basis functions in a random order.
The reordered basis functions are referred to as Ci. The true model contains the
first three reordered basis functions, while the different competing models are
defined as follows:

M1(t) = θ1C1(t)

M2(t) = θ1C1(t) + θ2C2(t)

M3(t) = θ1C1(t) + θ2C2(t) + θ3C3(t)

M4(t) = θ1C1(t) + θ2C2(t) + θ3C3(t) + θ4C4(t)

M5(t) = θ1C1(t) + θ2C2(t) + θ3C5(t)

M6(t) = θ1C1(t) + θ2C3(t) + θ3C5(t)

(5.18)

Note that model four is an over-parameterized version of the model that gen-
erated the data, while the last two models are wrong. The new measurement
is computed by sampling from the true model posterior predictive and adding

90



5.4 Results

Comparison Spearman CC

M3 over M1 .90 ± .22
M3 over M2 .93 ± .12
M3 over M4 .88 ± .11
M3 over M5 .91 ± .10
M3 over M6 .94 ± .04

Table 5.1: Spearman correlation coefficients between expected Bayes factor and JSD based
on 75 random models.

measurement noise. The mean of the resulting distribution of Bayes factors is
computed for every potential measurement. To compare with, JSDs are com-
puted for the same predictions.

The results reported here were based on 100 random models. Data at time
points told = [−1,−.8, . . . , .8, 1] was used for initial inference. The new poten-
tial measurements were located at tnew = [−2.5,−2.3, . . . , 2.3, 2.5]. The true pa-
rameters were drawn from a normal distribution with a standard deviation of 2.
The standard deviation of the noise was uniformly sampled between .1 and 3.1,
while the standard deviation of the noise on the new measurement was set to
.3. The prior distribution on the parameters had width 10. The expected Bayes
factors were based on 100 samples from the posterior distribution. Computing
the Spearman correlation coefficient (a measure of monotonicity) between the
expected Bayes factor and JSD resulted in high average correlation coefficients
(see Table 5.1). This provides an additional indication that the JSD can serve as a
good predictor for the increase in Bayes factor.
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5.4.3 Nonlinear artificial models

The predictive distributions for the different models are shown in Figure 5.7.
PPDs were simulated for two experimental conditions. One set where the stimu-
lus u was set to the value 1, and another where u was set to 2. These sets mimic
two different concentrations of signaling molecule.
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Figure 5.7: Predictions of the various nonlinear ODE models. The first five predictions
correspond to the same experimental condition as during the original inference (stimulus
1) while the second five predictions correspond to a different stimulus (stimulus 2). Note
that the differences between the different distributions are barely visible.

To test the effect of measuring multiple predictions, divergence estimates
were computed for a large number of combinations of two measurements. The
results are shown in Figure 5.8. Note the bright squares corresponding to the
concentration of BpCp in each of the models. These high efficacies are not sur-
prising, considering that the PPDs for these concentrations are very different for
the different models (See Figure 5.7). Also noticeable is that many of the experi-
ments on the same predictions reveal dark diagonals within each tile. Measuring
the same thing twice usually adds fewer predictive constraints than measuring at
two different time points, unless this second measurement is performed in a dif-
ferent condition (see how the diagonal lights up on the combination measuring
BpCp in condition 1 and 2 when selecting between models 3 and 4). The infor-
mation contained in such a matrix is very valuable when it comes to selecting
from a small list of experiments. For example, considering the current predictive
distributions, model 2 and 4 can barely be distinguished. This implies that an
entirely different experiment is required for distinguishing models 2 and 4.
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Figure 5.8: Jensen-Shannon divergences for each of the models. Each axis represents a single measurement. Each tile corresponds to a combi-
nation of two state variables where the space within each tile corresponds to the actual time point at which the state variable is measured. The
first five predictions correspond to the same experimental condition as during the original inference (u = 1) while the second five predictions
correspond to a different stimulus (u = 2).
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Subsequently, in silico experiments were performed by simulating new data
from the artificial true model and determining the Bayes factor change upon in-
cluding this data. Bayes factors were estimated using thermodynamic integra-
tion (see Appendix 5.6.1 for details). For the models considered here, each set of
four marginal likelihoods took about 6 days of wall-clock time on an Intel i7 CPU
(2.93 GHz) with MATLAB R2010a. The following ’experiments’ were performed

• 1. Steady state Cp and BpCp concentration

• 2. Bp and Dp during the peak in the second condition (u = 2)

• 3. Steady state Cp

According to the JSD estimates, experiment 1 should differentiate between
M1 and M3 (JSD ≈ 0.49), but not between M1 and M2 or M1 and M4. Experiment
2 should give discriminatory power for all models (J12 ≈ 0.48, J13 ≈ 0.54, J14 ≈
0.61). And finally, experiment 3 should not provide any additional discrimina-
tory power at all. The results of these analyses are shown in Table 5.2. As pre-
dicted, experiment 1 leads only to an increase in discriminatory power between
model M1 and M3. Experiment 2 improves the discriminatory power between all
the models while experiment 3 even reveals a decrease in discriminatory power
for model 1 and 2. Noteworthy is the large variance observed for experiment 3,
which is likely related to the large variance in the steady state predictions of Cp.
Again, the predictions based on the JSD are well in line with the Bayes factors
obtained.

J12 ∆B12 J13 ∆B13 J14 ∆B14

0.03 0.06 ± 0.19 0.49 0.32 ± 0.39 0.05 −0.07 ± 0.36
0.48 0.26 ± 0.14 0.54 0.72 ± 0.36 0.61 0.43 ± 0.38
−0.06 −0.49 ± 0.73 −0.01 −0.35 ± 0.68 −0.04 0.32 ± 0.54

Table 5.2: JSD and change in Bayes Factors denoted as mean ± standard deviation for
each of the reported experiments (n=3)

5.5 Discussion

This chapter described a method applicable to performing experiment design
with the aim of differentiating between various pathway hypotheses. We show
by means of a simulation study on analytically tractable models that the JSD is
approximately monotonically related to the expected change in Bayes factor in
favor of the model that generated the data (considering the current uncertainty
in its parameters). The applicability to non-linear models of biochemical reaction
networks was demonstrated by applying it to models based on motifs previously
observed in signaling networks [47, 48]. Experiments were designed for distin-
guishing between different feedback mechanisms.

94



5.5 Discussion

Though forecasting a predictive distribution of Bayes factors has been sug-
gested [49], the implicit penalization of model complexity could have adverse
consequences. The experiment design could suggest a measurement where the
probability densities of two models overlap, leading to implicitly penalizing the
more complex model followed by subsequent selection (of the simpler model).
Though a successful selection occurs, such an experiment would not provide ad-
ditional insight however. Additionally, computing the predictive distributions of
Bayes factors required for this approach is computationally intractable. By focus-
ing on differences in predictive distributions, it is possible to pinpoint where the
different models predict different states of nature. Aside from their usefulness
in model selection, such predictive differences could also be attributed to the
different mechanisms present in the model. This allows for follow-up studies to
investigate whether these are either artefactual or true system behaviour.

A complicating factor in this method is the computational burden. The largest
challenge to overcome is to obtain a sample from the posterior parameter distri-
bution. Running MCMC on high dimensional problems can be difficult. Fortu-
nately, recent advances in both MCMC [19, 50] as well as approximate sampling
techniques [38, 51–53] allow sampling parameter distributions of increasingly
complex models. The bottleneck in computing the JSD resides in searching for
the kth nearest neighbor. A subproblem which occurs in many different situations
and for which computationally faster solutions exist [54, 55]. Additionally, the
number of potential combinations of experiments increases exponentially with
the number of experiments designed. It is clear that this rapidly becomes infea-
sible for large numbers of experiments. However, it is not necessary to fill the
entire experimental matrix and techniques such as Sequential Monte Carlo sam-
pling could be considered as an alternative to more effectively probe this space.
We refer the reader to Appendix 5.6.5 for a proof of principle implementation of
such a sampler.

A more theoretical point of debate is the weighting of each of the models
in the mixture distribution used to compute the JSD. It could be argued that it
would be more sensible to weight models according to their model probabilities
by determining the integrated likelihoods of the data that is already available be-
fore performing experiment selection. The reason for not doing this is two-fold.
Firstly, the computational burden this adds to the experimental design proce-
dure is significant. More importantly however, the implicit weighting in favor
of parsimony could strongly affect the design by removing models which are
considered unnecessarily complex at this stage of the analysis. When designing
new experiments, the aim is to obtain measurements that allow for optimal dis-
crimination between the predictive distributions under the different hypotheses.
Optimal discrimination makes it sensible to consider the models equally proba-
ble initially.

The method has several advantages that are particularly useful for modeling
biochemical networks. Because the method is based on sampling from the pos-
terior parameter probability distribution, it is particularly suitable when insuffi-
cient data is available to consider Gaussian parameter probability distributions
or model linearizations. Additionally, it allows incorporation of prior knowledge
in the form of prior parameter probability distributions. This is useful when the
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5. Optimal Experimental Design for Model Selection

available data contains insufficient constraints to result in a well defined poste-
rior parameter distribution. Because the design criterion is based on predictive
distributions and such distributions can be computed for a wide range of model
quantities, the approach is very flexible. In biochemical research, in vivo mea-
surements are often difficult to perform and practical limitations of the various
measurement technologies play an important role. In many cases, measurements
on separate components cannot be performed, and measurements result in de-
rived quantities. Fortunately, in the current framework such measurements can
be used directly, since distributions of such experiments can be simulated.

Moreover, the impact of specific combinations of experiments can be assessed
by including them in the design simultaneously which reveals specific combina-
tions of measurements that are particularly useful. This way, informative ex-
periments can be distinguished from non-informative ones and the experimental
efforts can be targeted to discriminate between competing hypotheses.
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5.6 Appendix

5.6 Appendix

5.6.1 Thermodynamic integration

To estimate the Bayes factor, the marginal likelihood needs to be computed. For
a single model this quantity looks as follows:

p(yD|M) =
∫

p(yD|M,~θ)p(~θ|M)d~θ (5.19)

One approach to determine this marginal likelihood is to draw random sam-

ples ~θ from the prior and average the likelihood values for those samples. How-
ever, due to the fact that most samples will be taken in regions of low likeli-
hood, this method is highly inefficient. Another approach would be to employ
importance sampling. One tempting approach here is to use the posterior den-
sity function as an importance sampling function leading to the following Monte
Carlo Estimate:

(

1

N

N

∑
i=1

p(yD|M,~θi)
−1

)−1

(5.20)

but this estimate suffers from both numerical instability as well as severe bias
[56]. The alternative and more stable approach is to use thermodynamic integration,
where the problem is recast into a problem involving integration over various
intermediate distributions which are defined as follows:

pT(~θ|yD) =
p(yD|M,~θ)T p(~θ)

z(T)
(5.21)

with

z(T) =
∫

p(yD|M,~θ)T p(~θ|M)d~θ (5.22)

Consider the following:

∫ 1

0

d

dT
ln(z(T))dT =

∫ 1

0

1

z(T)

d

dT
z(T)dT = ln(Z(1))− ln(Z(0)) (5.23)

It can be seen that Z(1) corresponds to the marginal likelihood, while Z(0)
corresponds to the integrated prior (which is equal to 1). Consider

z(T) =
∫

eln(p(yD|M,~θ))T p(~θ|M)d~θ (5.24)

from which it follows that

ln(Z(1)) =
∫ 1

0

∫

p(yD|M,~θ)T p(~θ|M)

z(T)
ln(p(yD|M,~θ))d~θdT (5.25)
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Therefore, after obtaining samples at different intermediate distributions
spaced between T = 0 and T = 1, this integration can be performed numerically
by summing the expected value of the log-likelihoods at different temperatures:

p̂(yD|M) =
Tmax

∑
q=1

1

Nsamples

Nsamples

∑
i=1

ln
(

p(yD|M,~θ
Tq

i )
)

(5.26)

Here, Tq represents the temperature and~θ
Tq

i are samples associated with chain
q. Nsamples indicates the number of samples per chain. The temperature schedule
used in this study is given by:

Tq =

(

NT

q

)γ

(5.27)

with NT = 40 and γ = 4. For further information see [56].
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5.6.2 Mutual information

Mutual information is a quantity that measures the mutual dependence between
two random variables and is defined as:

I(X, Y) =
∫

Y

∫

X
p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy (5.28)

It measures the amount of information shared between two random variables.
A large mutual information implies that knowing the value of one of the vari-
ables reduces the uncertainty in the other. If two random variables are indepen-
dent, their mutual information is zero. If entropy

H(X) =
∫

X
p(x) log(p(x))dx (5.29)

is considered as a measure of the uncertainty associated with a random vari-
able, the mutual information can be expressed as follows:

I(X, Y) = H(X)− H(X|Y) (5.30)

Mutual information reflects how much the uncertainty in one random vari-
able is reduced by knowing about another. Assuming that the models are equally
probable a priori, averaging the predictive distribution of a new measurement
over the different models corresponds to the additive mixture of their predictive
densities. The Jensen-Shannon Divergence between two predictive densities can
be rewritten as the Mutual Information between this mixture of densities and a
model classifier:

Djs (Y|M1, Y|M2)

= ∑
m∈{M1,M2}

p(m)
∫

Y
p(y|M = m) log

(

p(y|M = m)

∑m∈{M1,M2} p(m)p(y|M = m)

)

dy

=
∫

Y
∑

m∈{M1,M2}
p(m)p(y|M = m) log

(

p(y|M = m)

∑m∈{M1,M2} p(m)p(y|M = m)

)

dy

=
∫

Y
∑

m∈{M1,M2}
p(y, m) log

(

p(y, m)

p(y)p(m)

)

dy

=I(Y, M) (5.31)

Informally, measuring a quantity that maximizes this mutual information
maximizes the reduction of uncertainty with respect to determining which of
the two distributions the new measurement came from. This supports the JSD as
a quantity useful for model selection.
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5.6.3 Density estimation methods

Density estimation can be approached in three different ways. Either by spec-
ifying a discretization of the joint predictive distribution (binning), using kNN
nearest neighbor density estimation or Kernel Density Estimation (Parzen win-
dowing). Each of these methods contains a size or bandwidth parameter, which
can be difficult to specify. For Gaussian distributions standard rules of thumb ex-
ist, but when joint density functions become more complex, these rules of thumbs
are no longer appropriate. Figure 5.9 shows some estimates based on the differ-
ent methods. Note how all JSD estimates strongly depend on the bandwidth
parameter. This parameter is often difficult to specify, especially when predic-
tions show different ranges. Note how the JSDs based on kNN quickly converge
to a stable estimate when k > 2. We chose kNN as a density estimator because
JSD estimates based on it are reasonably stable, but do not require choosing a
problem specific bandwidth.
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Figure 5.9: A: JSD computed using different density estimation techniques using 1000
samples. The colors in the left and right graph of panel A correspond to the same band-
width settings. B: Different correlations used to produce the JSD estimates. These results
were generated using a normal distribution with varying correlation coefficient and then
transforming one of the predictions using an exponential function. Such joint probability
structures resemble the ones previously observed in posterior predictive distributions of
biochemical networks.
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5.6.4 Model equations

Fluxes Stoichiometry

f1 = k1[A]

f2 = k2[Ap]

f3 = k3
1

k9 + [BpCp]
[B][Ap]

f4 = k4[Bp]

f5 = k5[Bp][Cp]

f6 = k6[BpCp]

f7 = k7[D]

f8 = k8[Dp]

f9 = k10[C]

f10 = k4[Cp]

˙[A] = − f1 + f2

˙[Ap] = f1 − f2

˙[B] = − f3 + f4

˙[Bp] = f3 − f4 − f5 + f6

˙[C] = − f9 + f10

˙[Cp] = − f5 + f6 − f10 + f9

˙[BpCp] = f5 − f6

˙[D] = − f7 + f8

˙[Dp] = f7 − f8

Table 5.3: Expressions for Model 1

Fluxes Stoichiometry

f1 = k1
1

k9 + [BpCp]
[A]

f2 = k2[Ap]

f3 = k3[B][Ap]

f4 = k4[Bp]

f5 = k5[Bp][Cp]

f6 = k6[BpCp]

f7 = k7[D]

f8 = k8[Dp]

f9 = k10[C]

f10 = k4[Cp]

˙[A] = − f1 + f2

˙[Ap] = f1 − f2

˙[B] = − f3 + f4

˙[Bp] = f3 − f4 − f5 + f6

˙[C] = − f9 + f10

˙[Cp] = − f5 + f6 − f10 + f9

˙[BpCp] = f5 − f6

˙[D] = − f7 + f8

˙[Dp] = f7 − f8

Table 5.4: Expressions for Model 2
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Fluxes Stoichiometry

f1 = k1[A]

f2 = k2[Ap]

f3 = k3
1

k9 + [Dp]
[B][Ap]

f4 = k4[Bp]

f5 = k5[Bp][Cp]

f6 = k6[BpCp]

f7 = k7[D]

f8 = k8[Dp]

f9 = k10[C]

f10 = k4[Cp]

˙[A] = − f1 + f2

˙[Ap] = f1 − f2

˙[B] = − f3 + f4

˙[Bp] = f3 − f4 − f5 + f6

˙[C] = − f9 + f10

˙[Cp] = − f5 + f6 − f10 + f9

˙[BpCp] = f5 − f6

˙[D] = − f7 + f8

˙[Dp] = f7 − f8

Table 5.5: Expressions for Model 3

Fluxes Stoichiometry

f1 = k1[A]

f2 = k2[Ap]

f3 = k3
1

k9 + [D]
[B][Ap]

f4 = k4[Bp]

f5 = k5[Bp][Cp]

f6 = k6[BpCp]

f7 = k7[D]

f8 = k8[Dp]

f9 = k10[C]

f10 = k4[Cp]

˙[A] = − f1 + f2

˙[Ap] = f1 − f2

˙[B] = − f3 + f4

˙[Bp] = f3 − f4 − f5 + f6

˙[C] = − f9 + f10

˙[Cp] = − f5 + f6 − f10 + f9

˙[BpCp] = f5 − f6

˙[D] = − f7 + f8

˙[Dp] = f7 − f8

Table 5.6: Expressions for Model 4
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5.6.5 Sampling bigger design matrices

When designing multiple experiments, each additional experiment constitutes
an additional direction in experimental design space. For the 2D examples in the
main text, filling this matrix entirely was not a problem. When designing a larger
number of experiments, sampling this entire space rapidly becomes infeasible
due to the curse of dimensionality. This is when one must resort to specialized
sampling methods. As a proof of principle, we present a sampler based on ideas
from Sequential Importance Resampling to sample these spaces. The sampler
works by executing a number of steps

• 1. Sample Q particles from a uniform distribution over the design space.
When the number of samples is reasonably small, one can use Latin hyper-
cube sampling to improve the coverage of the design space.

• 2. Evaluate JSDs for each of the samples and clip any negative values for
the JSD to zero.

• 3. Compute cumulative distribution function CDFjs for the JSDs and nor-
malize to a maximum of 1.

• 4. Generate νQ samples from a uniform distribution Xi ∼ U[0, 1]. Generate
particles for next iteration by sampling those particles which correspond to
values where Xi > CDFjs for the first time. Generate the other (1 − ν) Q
particles from a uniform distribution over the design space.

• 5. Perturb particles using a perturbation kernel until none of the particles
correspond to samples that were already evaluated. Note that during this
step, we take into account the various symmetries that exist in these ma-
trices such that we do not compute the same JSD twice. These symmetries
exist, since all permutations of the same combination of experiments corre-
spond to the same value for the JSD (e.g. J12 = J21).

• 6. Goto 2 until desired number of iterations has been reached.

This algorithm is straightforward to implement and results in regions with
high values for the JSD to be explored preferentially. Optionally, one can factor
in an experimental cost in the sampling criterion by multiplying the associated
JSD before computing the CDF. Note how in this implementation every iteration
involves a small fraction of the particles (ν) being sampled from the prior. This
is to avoid missing specific regions in experiment design space, that correspond
to high JSDs, in longer runs. It allows the algorithm to find new regions of high
JSD once the initial ones are densely sampled. An additional advantage is that
this approach allows real time monitoring of intermediate results from the exper-
imental matrix.

The sampling was compared to a full determination of the design matrix in
the 2D case. The comparison was performed in two ways. Firstly, by determin-
ing the maximal JSD found during the sampling. Secondly, by determining the
fraction of JSD accounted for when comparing to the full sampling procedure.
This fraction is computed by dividing the sum of the JSDs for the sampled points
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Figure 5.10: Sampling of the experiment design matrix in the 2D case. Left: Fraction of
total JSD found versus various values for ν. Shown are ten independent samplings. Right:
Maximum JSD found up to a certain iteration for different values of ν.
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Figure 5.11: Sampling of Jensen-Shannon divergences for various combinations of ob-
servables. Shown are the results for 100 iterations using 100 particles. This is 12% of the
evaluations required to sample the entire matrix. Top: JSD sampled using the importance
resampling approach. Bottom: Regions not sampled.

by the sum over the JSD values for the entire matrix. These two quantities are
displayed in Figure 5.10 for Q = 100 particles over 100 iterations.

Note how the maximum value found for the JSD does not seem to be very
sensitive to the value chosen for ν, while the fraction is strongly affected. For
most sampling runs, high values for ν turned out to be better, though the vari-
ability between different runs increases drastically for ν = 1. The actual design
matrices corresponding to the different values for ν are shown in Figure 5.10.
Note how the high JSD regions are sampled more densely for higher ν, yet for
ν = 1, some regions are completely missed.

Despite that the efficiency of the sampling likely depends on the posterior
predictive distributions (the relative size of the dense regions) and the dimen-
sionality of the problem, we expect that the improvement over simple random
sampling (ν = 0) remains.
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6. Computational Modeling of Diacylglycerol Transferase

Abstract

Triglycerides (TG) are the main form of storing metabolic energy and fatty acids.
Excessive accumulation of TG or hypertriglyceridemia has been implicated as
an important risk factor for various diseases. Production of TG occurs via two
major pathways which converge into a final reaction where fatty acids (FA) and
diacylglycerol (DAG) are bound into TG. Diacylglycerol acyltransferases (DGAT)
are membrane bound enzymes which are primarily responsible for catalyzing
this acylation of DAG. Mathematical modeling is applied to integrate different
sources of experimental data and investigate the contributions of the different
DGAT enzymes present in the underlying biological system. Taking into account
the qualitative understanding from literature, a network topology is proposed
and subsequently used to formulate a mathematical model. The fact that each of
the data sets required different but unknown normalizations and that the fluxes
at the boundary of the model were underdetermined, turned out to be detrimen-
tal for the predictive power of the model. Nevertheless, integrating different
sources of data into a mathematical model managed to consolidate a number of
predictions that seemed inconsistent at first. The difference resided in the amount
of upregulation performed in the different studies. Additionally, we may con-
clude that future experiments should focus on measuring fluxes at the boundary
of the model.
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6.1 Background

6.1 Background

Triglycerides (TG) are the main form of storing metabolic energy and fatty acids.
Though essential for normal physiology, excessive accumulation of TG or hy-
pertriglyceridemia has been implicated as an important risk factor for various
diseases such as atherosclerosis, hepatic steatosis and obesity [1, 2]. The pro-
duction of TG occurs via two major pathways: The glycerol phosphate and the
monoacylglycerol pathway which converge into a final reaction where fatty acids
(FA) and diacylglycerol (DAG) are bound into TG [3]. Diacylglycerol acyltrans-
ferases (DGAT) are membrane bound enzymes which are primarily responsible
for catalyzing this acylation of DAG [4]. Newly synthesized TG is either stored
in cytoplasmic droplets or secreted as very low density lipoprotein (VLDL) par-
ticles. Two different DGAT enzymes have been identified that are both highly
expressed in liver [5]. However, the role and relative contribution of each en-
zyme is not well understood quantitatively. Nevertheless, their relative activities
may have a significant impact on the development of hypertriglyceridemia and
hepatic steatosis. For this reason, they have also been marked as potential drug
targets [6].

Several experiments have been performed to elucidate the effects of the two
DGAT proteins. Decreasing DGAT2 activity using antisense oligonucleotides
(ASO) resulted in decreased liver TG and VLDL TG secretion in both wild type
and DGAT1 deficient mice [7]. In this study, the largest fraction of DGAT ac-
tivity was accounted for by DGAT1, yet liver TG levels were markedly lower in
the DGAT2 mice treated with ASO. In two independent studies, DGAT2 activity
accounted for only a small fraction of the total activity, yet inhibition of DGAT2
strongly reduced the incorporation of de novo synthesized FA both in vitro [8] and
in vivo [9]. This suggests that DGAT2 primarily acts upstream of DGAT1, es-
terifying newly formed fatty acids, while DGAT1 primarily re-esterifies recycled
fatty acids.

In this work, the aim is to use mathematical modeling to integrate different
sources of experimental data and to investigate the contributions of the different
DGAT enzymes. The reason for this is two-fold. Firstly, to consolidate some of
the contradictory observations reported in literature and unravel the functional
roles of each of the enzymes. Secondly, once sufficiently constrained, the model
can be integrated in the liver model presented in Chapter 7. This would allow
use of experimental data involving the use of inhibitors and/or knockouts of one
or both DGAT enzymes when performing inference on the overarching model.

6.2 Methods

The system is modeled using a system of ordinary differential equations. The

model comprises of equations ~f (~x(t),~u(t),~p) which contain parameters ~p (con-
stant in time), inputs ~u(t), and state variables ~x(t). Given a set of parameters,
inputs and initial conditions ~x(0), these equations can subsequently be simu-
lated. To estimate these parameters, measurements yD

i,j of observables ~y(t) were

gathered from literature. These measurements were acquired for different knock-
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outs and up- or downregulations of each of the DGAT enzymes. The advan-
tage of incorporating data sets obtained during different perturbations is that the
contribution of each of the DGAT enzymes may change. The aim of including
these perturbations is to disentangle the individual DGAT contributions. Cer-
tain data sets required scaling and offset parameters ~q to be incorporated in the
mathematical model. Additionally, the amount of up- and downregulation of

the DGAT enzymes in the various conditions had to be estimated. We define~θ as
~θ = {~p,~q,~x0}, which lists all the parameters required to simulate the model. For
more information on the scaling and offset parameters, see the section on exper-
imental data. Maximum Likelihood Estimation was performed by minimizing
the following least squares criterion

χ2(~θ) =
M

∑
i=1

Ni

∑
j=1





yD
i,j − yi(tj,~θ)

σi,j





2

(6.1)

where yi(tj,~θ) and yD
i,j are the model output and data point corresponding to

the jth time point of output i.

6.2.1 Misfit analysis

The quality of a model fit can be assessed by determining whether the model
residuals are in agreement with the assumed error model and do not show a
systematic trend [10]. When the model insufficiently describes the data, it can be
beneficial to elucidate which data sets provide contradictory constraints before
deciding to proceed. The approach we apply here is to re-estimate parameters
iteratively while artificially reducing the measurement uncertainty associated
with the data that the model fails to describe. To perform the analysis, the ob-
jective function is divided in two parts, the internal χ2

int and external χ2
ext sum

of squares, where the former refers to the sum of squared errors of the mea-
surements that are currently not described by the model, while the latter refers
to the measurements that are adequately described. The following augmented
objective function is then used to perform the misfit analysis

χ2
M(~θ) =

M

∑
i=1

Ni

∑
j=1

(

1 + λ1int
χ2

ext

χ2
int

)





yD
i,j − yi(tj,~θ)

σi,j





2

(6.2)

Where λ > 0 and 1int is an indicator function which is 1 if measurement point
yD

i,j is part of the internal sum of squares and 0 if it is part of the external sum of

squares. Both χ2
int and χ2

ext are updated at the end of each optimization. This

process is repeated until χ2
int becomes statistically acceptable or converges. By

performing this analysis and analyzing the different predictions along the misfit
profile, one quickly obtains an idea of which data sets are providing contradic-
tory constraints under the current model.
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6.2.2 Profiles

Once model predictions sufficiently describe the experimental data, confidence
intervals can be obtained using the Profile Likelihood method [11,12]. Parameter
confidence intervals can be computed for each parameter by forcing one param-
eter to change, while finding the region for which the inequality (6.3) continues
to hold. While performing this traversal, the other parameters are continually
re-optimized, hereby tracing a path through parameter space.

χ2(~θPL)− χ2(~θopt) ≤ χ2
1−α,1 (6.3)

Similarly, confidence intervals can be obtained for the predictions by aug-
menting the experimental data with an additional point which has to be satisfied
by the simulation and continually reoptimizing the parameters [13]. Initially, this
point is based on the simulation belonging to the optimal parameter values. Sim-
ilar to the Profile Likelihood, this additional constraint is then shifted followed
by subsequent parameter optimization. This process is continued until the sum
of squared errors exceeds the likelihood ratio threshold. The resulting profile is
known as a prediction profile likelihood (PPL).

χ2
PPL(z) = min

~θ,~θ∈{~θ|Q(~θ)=z}

[

χ2(~θ)
]

(6.4)

Here, Q refers to a function which takes a parameter vector and produces a
simulation point of the prediction that is being profiled.

6.2.3 Experimental data

The availability of quantitative experimental data determines the level of detail
at which certain biological processes can be integrated into the mathematical
model. In this work, we aim to consolidate different sources of experimental
data into a single consistent dataset for parameter estimation.

The first dataset (Liu et al) involved knockdown of DGAT2 using DGAT2
gene-specific antisense oligonucleotide (ASO) in both C57BL/6 wild-type mice
and DGAT1 knockouts (DGAT1 KO) [7]. Concentration measurements of VLDL
TG after intraperitoneal injection of 400µL P407 (1 mg/g) solution in sterile PBS
were used (Table 6.1). The non-ionic detergent P407 inhibits TG hydrolysis by
lipoprotein lipase. The VLDL TG production rate is then typically calculated

Time WT [µM] WT/ASO [µM] DG1KO [µM] DG1KO/ASO [µM]

0 h 858 ± 980 4656 ± 2695 10904 ± 1102 21623 ± 1715
1 h 1286 ± 980 2757 ± 1348 5635.6 ± 1348 9005 ± 2083
2 h 1225 ± 1225 7167 ± 2573 13722 ± 2450 18683 ± 3186
4 h 1348 ± 980 3553 ± 1960 7902 ± 1838 10842 ± 5146

Table 6.1: VLDL TG after injection with P407 reported as mean ± sem (n=5). ASO refers to
60 mg/kg antisense oligonucleotide.
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Condition mRNA level VLDL TG [%]

WT 25 mg/kg ASO .4476 ± .3211 74.9
WT 40 mg/kg ASO .3252 ± .0742 71.1
WT 60 mg/kg ASO .1924 ± .0358 48.3
DG1KO 60 mg/kg ASO .2343 ± .0655 NA

Table 6.2: Fractional mRNA decrease reported as mean ± sem (n=5) and fractional dose
response of VLDL TG production.

Condition VLDL TG [µM/h] TGC[µmol/g] TGER + DAG [µmol/g]

WT 7024 ± 829 17.71 ± 6.35 4.06 ± 0.61
DG1+ 6736 ± 630 36.47 ± 14.12 4.23 ± 0.74
DG2+ 6598 ± 480 45.09 ± 11.66 4.31 ± 0.60

Table 6.3: VLDL TG production in wild type and during DGAT overexpression. Lipid
concentrations in wild type and during DGAT overexpression expressed in µmol per gram
liver.

from the increase of plasma VLDL TG over time [14]. Additionally a dose re-
sponse curve of VLDL TG secretion versus ASO concentration was included (Ta-
ble 6.2). Liver cDNA was made by reverse-transcription using total RNA and
used for real-time PCR to quantify DGAT2 mRNA levels. These were resam-
pled using a Monte Carlo approach to obtain mean and standard deviations of
fractional MRNA decrease (Table 6.2).

The second data set (Millar et al) involved short term overexpression of
DGAT1 and DGAT2 [15]. This data set included measurements of VLDL
secretion, and, cytoplasmic and membrane lipids (Table 6.3). Note however, that
the lipid measurements effectively measure the backbone of the TG molecules,
therefore the data is only used to constrain the sum of DAG and TG in the
endoplasmic reticulum (ER).

Additionally, a TG measurement for the WT was included from [16] which
was 13.06 ± 1.65 µmol per gram liver. The fourth data set (Yamazaki et al) was
measured during upregulation of DGAT1 and DGAT2 [17]. Here measurements
of VLDL TG production (Table 6.4), liver lipids and DGAT activities towards the
different compartments (Table 6.5) were measured under all three experimental
conditions.

Time WT [µM] DG1+ [µM] DG2+ [µM]

0 h 1367.9 ± 956.4 1367.9 ± 597.9 1128.6 ± 836.8
1 h 7511.1 ± 956.6 9663.5 ± 837.0 7211.9 ± 478.3
2 h 12458.4 ± 2989.3 15447.9 ± 2391.8 13773.9 ± 2032.8
3 h 19917.1 ± 2391.5 24760.0 ± 3228.4 19020.1 ± 2869.4
4 h 23609.1 ± 3348.0 30963.0 ± 2630.6 25940.6 ± 4065.9

Table 6.4: VLDL TG after injection with P407 mean ± sem(n = 8) in µM.
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Condition Hepatic Lipid [µmol/g] Ratio

WT 65.69 ± 13.33 1.401 ± 1.27
DG1+ 128.05 ± 13.33 4.231 ± 1.30
DG2+ 202.79 ± 7.61 −2.160 ± 1.40

Table 6.5: Hepatic lipid reported as mean ± sem (n=5) in µmol per gram liver and frac-

tional production to each compartment ln
(

Vovert
Vlatent

)

in the wild type and during DGAT

upregulation.

The DGAT activity was measured by determining the incorporation of la-
beled DAG into TG. Studies revealed that de novo TG are incorporated via DGAT2
and not DGAT1 [8]. Since the de novo flux is based on unlabeled monoacyl-
glycerol, it was effectively not measured. Additionally, the activity data was
expressed relative to the amount of protein, which required additional scaling
factors for each condition. To avoid including another (non-identifiable) scaling
factor, the data was incorporated as a ratio-metric constraint between overt and
latent activities. Assuming log-normal distributions for the activities, we deter-
mined the mean and standard deviation of these ratios in log-space by employing
a Monte Carlo approach resampling parametric distributions fitted to the data.

Since most of the experimental data is expressed in units per gram liver, the
computational model employs these units. VLDL TG levels and VLDL secretion
parameters are represented in µM and µM/hr however. Consequently, a scaling
factor is required for the ratio gliver/Vplasma. The former is an estimated parame-
ter, bounded between 0.9 and 2 grams [18], while the latter is fixed at 1mL [16].

6.2.4 Computational model

A mathematical multi-compartment model of the diacylglycerol transferase sys-
tem was proposed. The model contains three compartments representing the
cytoplasm, endoplasmic reticulum (ER) and ER membrane where the DGAT
enzymes reside. Diacylglycerol and fatty acids in the membrane compartment
are explicitly modeled where influx and degradation are estimated quantities.
Triglycerides are produced from these metabolites and transported to the cyto-
plasmic and endoplasmic compartments. Triglycerides in the endoplasmic com-
partment are converted into nascent produced VLDL particles associated with a
rate kVLDL. The complete model, schematically shown in Figure 6.1 comprises of
a system of coupled ordinary differential equations.

Each of the DGAT proteins is associated with a rate, VDG1 and VDG2 respec-
tively. Since it is unclear how much each of the enzymes contributes to the cy-
tosolic and endoplasmic production flux, the direction in which the DGAT en-
zymes operate was not fixed in the design. Rather than making each DGAT
produce triglycerides into a specific compartment, we introduced fraction pa-
rameters γDG1 and γDG2 for each of the DGAT enzymes. This fraction pertains
to the fraction of TG that is pumped into the cytosol. These fraction parameters
were subsequently estimated along with the other model parameters. Recent
tracer studies identified that de novo fatty acid synthesis occurs via DGAT2 [8, 9].
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Figure 6.1: The DGAT model structure.

Therefore an additional parameter representing de novo TG synthesis is also in-
cluded in the DGAT2 flux. Finally, the reverse fluxes of TG from the cytosolic
and endoplasmic compartment to DAG and FA in the membrane are associated
with estimated rate constants kcbwd and kebwd.

To use the dose-response data [7], a minimal mRNA transcription model was
used. Since the ASO treatment operated at a time scale of weeks and the VLDL
experiments were on the time scale of hours, the transcription model was as-
sumed to be in equilibrium (quasi steady state). The mRNA model is comprised
of the following equations

d[MRNA]

dt
= k1 − (k2 + k4 + k5[ASO])[MRNA] (6.5)

d[DG2]

dt
= k2[MRNA]− k3[DG2] (6.6)

Setting the right hand side to zero results in the following expression for the
steady state concentration of DGAT2

[DG2]SS =
ka

kb + [ASO]
(6.7)

Enzyme activity was modeled as being proportional to the amount of enzyme
available. The different parameters can be combined into phenomenological pa-
rameters VDG2 and kASO, which are subsequently estimated along with the other
model parameters. This leads to the following expression for the DGAT rate.

V
app
DG2 =

VDG2

kASO + [ASO]
(6.8)

Additional parameters were added to simulate the upregulation of the dif-
ferent DGAT enzymes. These parameters represent the fractional increase of en-
zyme activity when simulating these experimental perturbations.
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Flux Expression Description

fDG1 VDG1[DAG][FA] DGAT1 flux

fDG2,a VDG2 (kDG2 + [ASO])−1 [DAG][FA] DGAT2 flux

fDG2,b VDG2 (kDG2 + [ASO])−1 [DAG]FAdenovo DGAT2 de novo flux
fcbwd kcbwd[TGc] TG flux from cytosol
febwd kebwd[TGe] TG flux from ER
fVLDL kVLDL[TGe] VLDL production flux

f in
DAG DAGin DAG influx

f out
DAG kDAG[DAG] DAG outflux

f in
FA FAin FA influx

f out
FA kFA[FA] FA outflux

Table 6.6: Flux expressions for the DGAT model.

V∗
DG1 = VDG1

(

1 + DG1up

)

V∗
DG2 = VDG2

(

1 + DG2up

) (6.9)

The full list of flux expressions is shown in Table 6.6. Which combine into the
following differential equations for the model state variables

d[TGc]

dt
= γDG1 fDG1 + γDG2 ( fDG2,a + fDG2,b)− fcbwd

d[TGe]

dt
= (1 − γDG1) fDG1 + (1 − γDG2) ( fDG2,a + fDG2,b)− febwd − fVLDL

d[DAG]

dt
= − fDG1 − ( fDG2,a + fDG2,b) + febwd + fcbwd + f in

DAG − f out
DAG

d[FA]

dt
= − fDG1 − ( fDG2,a) + febwd + fcbwd + f in

FA − f out
FA

(6.10)

6.3 Results

The first step in model analysis is fitting the model outputs to the experimental
data. Optimization was initiated from widely dispersed initial values to reduce
the chance of missing local minima. This multiple minimization approach failed
to provide an adequate description of all the data simultaneously. Misfit analysis
revealed that there was a systematic discrepancy between the constraints pro-
vided by the activity data measured by Yamazaki et al and the rest of the data (see
Figure 6.2). Since these measurements were obtained by integrating production
over a fixed period of time in vitro, it is possible that the activity measured in this
manner was not sufficiently representative for the steady state condition in vivo.
Alternatively, one could consider incorporating the ratio by simulating the exper-
iment dynamically, but the initial conditions in the experimental medium are un-
known. This means a dynamic simulation of this experiment would require the

117



6. Computational Modeling of Diacylglycerol Transferase

addition of several free parameters. These additional parameters rendered the
actual activity non-identifiable (by being related to the initial conditions). There-
fore, this data did not provide additional model constraints and was omitted
from further analysis. After omission of the activity data, the model simulations
were in statistically acceptable agreement with the data (χ2 test with significance
level α = 0.05).
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Figure 6.2: Comparison of the trade-off made between the different data sets. The differ-
ent simulations are denoted by lines and crosses, where darker lines and crosses indicate a
higher weighting of the activity data. Note how the model fails to describe the measured
TG flux ratios.

Profile Likelihood analysis was performed for each of the parameters to in-
vestigate how well the model parameters were constrained. As shown in Figure
6.3, most parameters are either non-identifiable or characterized by very wide
bounds. This is not unexpected, since most fluxes can be compensated by unmea-
sured fluxes at the boundary of the model. The relevant prediction profiles (the
individual fluxes of the two DGAT enzymes) were also non-identifiable. Such
non-identifiabilities imply that a Bayesian analysis would be very sensitive to
the assumed prior distributions and in this case, realistic priors or bounds are not
available for the majority of the non-identifiable model parameters. The fractions
resembling the destination (cytosol or endoplasmic reticulum) of TG produced
by either DGAT enzyme turned out to be correlated, implying that there is too
little information available to adequately disentangle the two enzymes. This is
not surprising considering that the only difference between the two is the de novo
flux of fatty acids which turned out to be non-identifiable.

Ranked correlation coefficients between the different parameters were com-
puted for each of the profiles. Subsequently thresholding these at a correlation
coefficient of 0.95 revealed distinct patterns of correlations between the parame-
ters corresponding to each profile. This analysis revealed that the fact that the de
novo fatty acid production was not measured compromises the ability to estimate
the rate constant of DGAT2. Since the measurement of the membrane TG effec-
tively only provides an upper bound for the TG in the ER, the VLDL rate constant
is merely constrained at its lower bound. Similarly, the FA sink is entangled with
both the ER TG concentration (and therefore the backward flux) and FA influx.
Interestingly, this structural relation does not appear in the profiles belonging to
the DAG rate constants, which are merely related to each other.
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Figure 6.3: Profile Likelihoods with respect to various kinetic parameters of interest in the
DGAT model. Note how the likelihood profiles corresponding to most of the parameters
flatten out and do not reach the bound (dashed line) required for identifiability.

PPLs were determined for each of the state and flux predictions, from which
it could be concluded that these were non-identifiable. Since these fluxes were
ill determined, integration in the overarching model is not yet reasonable at this
point.

6.4 Discussion

Earlier works revealed no effects of short-term over-expression of DGAT1 or
DGAT2 on VLDL secretion [15]. Whereas another study showed that
over-expression of DGAT1 resulted in increased secretion of TG via VLDL
particles and an increase of TG within the lumen of the ER. Overexpression of
DGAT2 gave neither of these effects, but greatly increased the TG present in the
cytosol [17]. Though these observations may seem contradictory at first, the
model is able to describe both these observations and show that they are not
inherently inconsistent. The difference resides in the amount of upregulation
that is actually being performed. Although the actual value of the constants that
control the amount of upregulation are poorly identifiable from the data in the
Yamazaki data set, the parameter sets consistent with the data consistently
predict a larger upregulation than in the Millar data. Misfit analysis revealed
that, considering the current model, the activity measurement provided
constraints contradictory to the rest of the data.

The fact that the fluxes at the boundary of the model were underdetermined
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and that most of the data was acquired in steady state turned out to be detri-
mental for the predictive power of the model. Due to these issues, data mined
from literature can (as it has in this case) result in a large number of non- or
poorly identifiable parameters and predictions. As such, this scenario repre-
sents a fairly typical example of a first generation model based on literature data
and furthermore underlines the importance of reporting the predictive power
of a model. Additionally, the fact that two seemingly contradictory observations
could be consolidated by modelling them with different amounts of upregulation
revealed that considerable care must be taken when comparing the results from
different biological studies. Conclusions drawn between studies may depend on
unknown and unmeasured factors, confounding the quantities of interest. By
formalizing the conceptual model in terms of mathematical equations before do-
ing the measurements, it is possible to increase the probability that the experi-
ment will be informative. Though the biological insights this chapter delivers
are somewhat limited, the model could still be used to guide future experiments
and determine what quantities should be measured to infer the relative contribu-
tions of each of the enzymes and/or develop treatments based on targeting either
enzyme. Important to consider is the contribution of the de novo fatty acid pro-
duction flux, which should differentiate the relative contributions of each of the
enzymes. Once sufficiently constrained at the model boundaries, the model can
be integrated in the liver model presented in Chapter 7 and used to incorporate
measurement data obtained during manipulation of the DGAT enzymes.
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Abstract

Unraveling long-term adaptations in biological systems is complicated by the
multilevel aspects of such systems and the time-scale on which they occur. These
complications are exacerbated by the fact that insufficient information on the
network structure and interaction mechanisms is available to explicitly formu-
late models of the involved processes. For this reason, classical methods for
modeling and optimal experiment design are not applicable. We propose and
demonstrate a new method for experimental design, which we apply on a model
of hepatic lipid and plasma lipoprotein metabolism describing pharmacological
activation of the liver X receptor (LXR). Our method captures the modulating
effects of the genome and proteome on the metabolic level using time-dependent
descriptions (or trajectories) of the model parameters. By generating bootstrap
replicates of the data, a distribution of parameter trajectories is generated. The
non-linear relations in this distribution are subsequently probed to determine
which experiments would lead to more constrained predictions. The proposed
method enabled us to rank different experiments according to their efficacy at
constraining biliary cholesterol excretion. When designing for reduced uncer-
tainty in the biliary excretion of cholesterol, a non-invasive experiment appeared
to be highly effective. Data corresponding to the proposed experiment was sub-
sequently included. This lead to a 52% reduction in the uncertainty of the deter-
mined adaptations in cholesterol excretion. Additionally, obtained reductions in
flux uncertainty were well in line with predictions obtained in the design.
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7.1 Introduction

7.1 Introduction

Improved understanding of biochemical networks and their molecular adapta-
tions during diseases or interventions, is one of the driving ambitions of compu-
tational biology. Computational modeling allows us to integrate various sources
of experimental data with models that can be simulated. By calibrating mod-
els to data and subsequently making predictions, conceptual understanding can
be tested in a quantitative manner [1–3]. One application of particular interest
are the adaptations that occur during progressive diseases, e.g., diabetes type 2,
metabolic syndrome and cardiovascular diseases [1]. Unraveling such long term
adaptations is complicated by the multilevel aspects of the underlying system
and the time-scale on which they occur. Whereas classical models in computa-
tional biology are typically constructed to simulate processes at a single level,
e.g., transcriptome, proteome, or metabolome level [4–9], progressive diseases
are often the result of a combination of processes and changes which occur on
multiple levels and time-scales. Identifying these changes is difficult since ex-
plicit formulation of the processes at these levels is not realistic due to insufficient
information on the network structure and interaction mechanisms.

Recently, a computational approach named ADAPT (Analysis of Dynamic
Adaptations in Parameter Trajectories) was proposed which addresses the afore-
mentioned issues [1, 10] by capturing the modulating effects on the metabolic
level using time-dependent descriptions (or trajectories) of the model parame-
ters. These trajectories are obtained by determining which dynamic changes in
the model parameters are required to describe data acquired at different time
points. The trajectories form an hypothesis on how the various model param-
eters, fluxes and concentrations change during this adaptation. Typically, large
ranges of parameter values correspond to model simulations that have an accept-
able agreement with the data [2, 11–14]. These parameter (and therefore also pa-
rameter trajectory) uncertainties are probed by means of a parametric bootstrap
of the data. Parameter uncertainties do not necessarily have to be a problem
as long as the model predictions of interest are still well constrained [1, 15–18].
When this is not the case, more data is required. Improving such uncertain pre-
dictions is a relevant step to further our understanding of the molecular adap-
tations that drive disease progression. As these uncertainties depend on both
model equations and the available data, it is often not evident which experi-
ments would constrain such predictions most effectively. Statistical methods can
be applied in order to select experiments that will reduce uncertainty in an opti-
mal manner. In this work, we focus on V-optimality, which strives to minimize
prediction variances. Classical methods for experimental design are often based
around models with constant parameters [19–21], where all the time dependence
is captured by the dynamical model. However, when parameters depend on
time, such methods are not appropriate.

We propose a method for selecting optimal experiments, which is based on
predicting variance reductions for various combinations of experiments. The
method is based on simulating new experiments by weighting the determined
parameter trajectories and hereby exploits relations between different param-
eters and predictions [3]. The proposed method enables the modeler to focus
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experimental efforts towards reducing the uncertainty of specific predictions.
In the present study, the approach is applied to a case study that concerns

pharmacological activation of the liver X receptor (LXR) in mice for a period of
three weeks. LXR plays a central role in the control of cellular lipid and choles-
terol metabolism, and its activation promotes the cellular efflux, transport, and
excretion of cholesterol from the body. Consequently, LXR reduces the risk of
plaque formation in arteries and is therefore considered a potential drug target
for the prevention or treatment of atherosclerosis [22–24]. However, LXR also
induces a wide range of other adaptations in lipid and sterol metabolism, e.g.,
the excessive accumulation of triglycerides in the liver and the production of
enlarged lipoproteins. The molecular mechanisms inducing these adaptations
are not fully understood, which complicates the clinical application of LXR ago-
nists [23, 24]. Results from earlier computational analyses indicated that, despite
a large amount of data on the metabolic level, many predictions are still highly
uncertain [25]. In this work, we apply the proposed method to further constrain
these predictions.

7.2 Methods

The methods section is divided into two parts. First, we give a brief overview
of ADAPT, which is used to describe the modulations at the metabolic level [1,
10]. Subsequently, we discuss how these parameter trajectories can be used for
optimal experiment design. The entire approach is briefly depicted in Figure 7.1
and shall be discussed below.

7.2.1 Obtaining a continuous description of the data

The first step in our methodology is to obtain a time dependent description of
the data. Continuous dynamic descriptions of the experimental data were ob-
tained by calculating cubic smoothing splines that describe the dynamics of the
experimental data. The uncertainty associated with the experimental data is
propagated to these interpolants by means of sampling a parametric uncertainty
model [18, 26, 27]. Since data variability scaled with magnitude, multiplicative
measurement errors were assumed [28]. To convert these to additive error, both
data and model simulations are log-transformed and inferences are performed in
logarithmic space [29]. New replicates of the experimental data are generated us-
ing Gaussian distributions based on the transformed data. Subsequently, splines
are generated for each of the data realizations, thereby obtaining a sample of data

interpolants ~d(t). These splines are subsequently used for parameter trajectory
estimation.

7.2.2 Mathematically modeling the metabolic network

Model development is mostly driven by two factors, the scientific question at
hand, and, the amount and quality of the available experimental data. Whereas
the former dictates which processes must be present, the latter determines the
level of detail with which various processes can be incorporated. In this case, the
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Figure 7.1: Overview of the optimal experiment design method.
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experimental data mostly consisted of measurements at the metabolome level
and therefore modeling efforts were mostly focused on the pathways at this level.
The metabolic level is modeled using ordinary differential equations which pro-
vide dynamical relationships between the metabolites in time:

~̇x(t) = ~f (~x(t),~θ,~u(t)) (7.1)

~y(t) = ~g(~x(t),~θ,~u(t)) (7.2)

~x(0) = ~x0 (7.3)

Here, ~̇x is a vector of time derivatives of molecular species ~x. The initial con-
centrations are given by ~x0. The vector ~y represent the model outputs. Both

mappings ~f and ~g depend on kinetic parameters ~θ and optional model inputs
~u(t).

7.2.3 Modulating effects on the metabolic network

The system of ordinary differential equations relate the various concentrations at
the metabolic level. Rather than explicitly modeling the processes at the other
levels (e.g. genome, proteome), their effects on the metabolic fluxes are captured

by introducing a time-dependency of the metabolic parameters ~θ(t) [1]. This
time-dependency is implemented by dividing the simulation into steps and re-

estimating the vector of parameters ~θ(t + δt) at each time step.

~X[n] = ~x(∆t,~θ[n]) with ~x(0) = ~X[n − 1] (7.4)

~Y[n] = ~g(~X[n],~θ[n],~u) (7.5)

~X[0] = ~xss(~θ[0]), ~θ[0] ∈ Θ̂0 (7.6)

~X and ~Y represent the internal model states and measurable model output
predictions at the discretized time steps 0, ∆t, ..., N∆t respectively. Each time

step, the value at the previous time step ~X[n − 1] is used as an initial condition
for ODE simulation ~x(t), while the previous parameter set is used as initial pa-

rameter set for optimization. The term ~xss(~θ[0]) refers to the steady state solution

corresponding to the initial parameters ~θ[0]. These initial parameters are drawn
from the collection Θ̂0 which contains parameter sets optimized for the untreated

phenotype. An optimized parameter set ~̂θ[n] is defined as follows:

~̂θ[n] = arg min
~θ[n]

(

χ2
d(
~θ[n]) + λrχ2

r (~θ[n])
)

(7.7)

Here, χ2
d represents the fidelity to the data and corresponds to the sum of

squared differences between the data interpolants corresponding to a single
spline and the associated model outputs, while χ2

r represents a regularization
term that minimizes parameter fluctuations. Here λr is a constant which
determines the strength of the regularization term. The constant λr is chosen in
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such a way that χ2
r reduces while biasing the sum of squared differences χ2

d as

little as possible [1]. Here χ2
d and χ2

r are given by:

χ2
d(
~θ[n]) =

Ny

∑
i=1

(

Yi[n]− di(n∆t)

σi(n∆t)

)2

(7.8)

χ2
r (~θ[n]) =

Np

∑
i=1

(

θi[n]− θi[n − 1]

∆t

1

θi[0]

)2

(7.9)

where Ny is the number of observable quantities and, Np is the number of pa-
rameters. This process is subsequently repeated for each set of splines, resulting
in a sample of parameter trajectories. We shall refer to the distribution of these as
Parameter Trajectory Distribution (PTD). The corresponding model outputs shall
be denoted as y with elements yi,j(t). Here, the first index i refers to the output,
while the latter j refers to the spline replicate the estimate was based on. For the
sake of clarity, we omit denoting the dependence on time t.

7.2.4 Using parameter trajectories for experiment design

The PTD is a distribution of predicted trajectories conditioned on the available
data. It forms a link between data, the parameter trajectories and the various
predictions. The dynamics of the system and the effects of modulations from
the proteome and transcriptome levels are constrained by the model, the exper-
imental data and the regularizing constraint that ensures minimal adaptation.
Therefore, the model, regularization and data implicitly impose non-trivial re-
lations between the different predictions and parameter modulations. Since all
of these quantities are linked, this also means that predictions corresponding to
candidate experiments are related to our prediction of interest. The prediction
we are interested in (biliary cholesterol excretion) is only accessible by means of
an invasive procedure. The objective here is to find measurable quantities which
relate to our prediction of interest and use these relations for experiment design.

Consider a new measurement. The additional data point that would be ob-
tained is associated with an error model G which reflects the uncertainty asso-
ciated with the new data point. Incorporating this additional data would sub-
sequently lead to an additional constraint on the PTD, hence also affecting the
prediction of interest. Measurement efficacy will be evaluated by determining its
effect on the variance Vpost of the prediction of interest. To this end, we predict the
variance of the prediction of interest z after the new measurement data is added.
Consider a new measurement of prediction n leading to a data point with a mean
d and standard deviation σ. By weighting the different replicates in the PTD ac-
cording to the new data point, we can obtain an estimate for the variance after
the measurement were to be included. The predicted bias-corrected weighted
variance after including the new data point is given by:

Vpost (y, z, n, d, σ) =
ESSn

ESSn − 1





N

∑
i=1

wn,iy
2
z,i −

(

N

∑
i=1

wn,iyz,i

)2


 (7.10)
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where the individual weights are given by:

wn,i = wn,i(y, d, σ) =
G (yn,i, d, σ)

∑
N
k=1 G (yn,k, d, σ)

(7.11)

Here N corresponds to the number of spline replicates. The Effective Sample
Size (ESS) used in the bias correction term (see Appendix 7.5 for further informa-
tion) is given by:

ESSn =

(

N

∑
i=1

w2
n,i

)−1

(7.12)

Assuming Gaussian measurement errors, G is given by:

G (x, d, σ) = exp

(

− (x − d)2

2σ2

)

(7.13)

Subsequently, variance reduction Vred is calculated as:

Vred(y, z, n, d, σ) = 1 − Vpost (y, z, n, d, σ)

Vpre(yz)
(7.14)

where Vpre(yz) is the variance of the prediction of interest yz before experi-
ment design. A priori, it is unknown what the measured value d will be. How-
ever, by consecutively repeating this estimation procedure for all the replicates
(substituting the predicted value corresponding to the current replicate as the
measured value), a sample of predicted variances is obtained. This sample can
subsequently guide the experimental design as it gives information on both the
accuracy of the variance estimate and its expected value. Using this approach,
it is possible to compute an expected variance reduction after the new measure-
ment(s).

SVR(y, z, n, σn) = 1 − 1

N

N

∑
i=1

(

Vpost (y, z, n, yn,i, σn)

Vpre(yz)

)

(7.15)

7.2.5 Implementation details

The mathematical model and parameter estimation routines were implemented
in MATLAB (2010b, The MathWorks, Natick, Massachusetts). The ordinary dif-
ferential equations were integrated using compiled MEX files based on numeri-
cal integrators from the SUNDIALS CVode package (2.6.0, Lawrence Livermore
National Laboratory, Livermore, California) [30, 31]. Absolute and relative tol-
erances were set to 10−12. The MATLAB non-linear least-squares optimization
method LSQNONLIN, which uses an interior reflective Newton method, was
used to estimate model parameters [32]. Both termination tolerances for the
change in objective function and parameter estimates were set to 10−10. The
MATLAB function CSAPS was used to calculate the cubic smoothing splines.
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7.3 Results

We presented a generally applicable computational approach to improve predic-
tions of molecular adaptations by predicting the efficacy of additional experi-
ments. In the present section, we shall demonstrate the method by applying it to
a model of hepatic lipid and plasma lipoprotein metabolism upon pharmacologi-
cal treatment of mice by LXR agonist T0901317. To demonstrate the capabilities of
the proposed method and to test its applicability, the design is focused on model
outputs that can experimentally be verified. A beneficial effect of LXR activa-
tion is the increased excretion of cholesterol from the body. The biliary system
is an important route that facilitates the transport of cholesterol from the liver
to the intestinal lumen, which precedes its subsequent excretion from the body.
However, at present, the adaptation of the biliary cholesterol excretion flux upon
LXR activation, and its contribution to the whole-body excretion of cholesterol,
cannot be predicted accurately. In the following sections, optimal experiment
design shall be performed to reduce the variance of the corresponding flux in the
computational model ( f29).

7.3.1 Experimental data

A data set of C57BL/6J mice treated with T0901317 for 0, 1, 2, 4, 7, 14, and 21 days
was acquired and included in the computational analyses. A detailed descrip-
tion of the experimental materials is included in Appendix 7.5. In brief, the
set contains quantitative measures of hepatic triglyceride, free cholesterol, and
cholesterylester levels, as well as the fractional contribution of de novo lipogene-
sis. Furthermore, data of plasma concentrations of triglyceride, total cholesterol,
HDL-cholesterol, and free fatty acids (FFA) were included. Data was obtained
providing information on the production and clearance rates of VLDL particles,
as well as the diameter and triglyceride/cholesterol composition ratio of these
particles. Additional data for the wild-type phenotype was included, containing
flux measurements of the hepatic uptake of cholesterol [33]. Information on the
dietary intake of cholesterol and bile acids was obtained from [34].

7.3.2 Computational model

A mathematical multi-compartment model was constructed [1, 25], that inte-
grates metabolic processes involved in hepatic and intestinal lipid metabolism, as
well as plasma lipoprotein metabolism (see Figure 7.2). The mathematical model
contains five compartments representing the liver, intestine, intestinal lumen, pe-
riphery, and blood plasma. The liver compartment includes the production, uti-
lization and storage of triglycerides and cholesterols, as well as the mobilization
of these metabolites to the endoplasmic reticulum where they are incorporated
into nascent produced VLDL particles. The VLDL particles are secreted in the
plasma where they provide nutrients for peripheral tissues. Moreover, the model
includes the hepatic uptake of free fatty acids and reverse transport of cholesterol
via HDL. In addition to the original model by Tiemann et al [25], we added pro-
cesses involved in the efflux of cholesterol and bile acids to the intestinal lumen
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where they are reabsorbed or excreted from the body. A detailed description of
the model, including equations, is presented in Appendix 7.5.

Figure 7.2: Multi-compartment model of lipid and cholesterol metabolism. A math-
ematical multi-compartment model was constructed which integrates metabolic pro-
cesses involved in hepatic and intestinal lipid metabolism, as well as plasma lipoprotein
metabolism. The mathematical model contains five compartments representing the liver,
intestine, intestinal lumen, periphery, and blood plasma. The liver compartment includes
the production, utilization and storage of triglycerides and cholesterols, as well as the mo-
bilization of these metabolites to the endoplasmic reticulum where they are incorporated
into nascent produced VLDL particles. The VLDL particles are subsequently secreted in
the plasma where they provide nutrients for peripheral tissues. The model furthermore
includes the hepatic uptake of free fatty acids from the plasma, and the reverse cholesterol
transport pathway, i.e., the net transport of cholesterol from peripheral tissues back to the
liver via HDL. The model includes processes involved in the efflux of cholesterol and
bile acids to the intestinal lumen where they are reabsorbed or excreted from the body.
ApoB, apolipoprotein B; BA: bile acid; CE, cholesterylester; ER, endoplasmic reticulum;
FFA, free fatty acid; FC, free cholesterol; HDL, high-density-lipoprotein; TG, triglyceride;
VLDL, very low density lipoprotein
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Figure 7.3: Experimental design was performed targeting a variance reduction of the bil-
iary cholesterol excretion ( f29). Presented are the mean variance reductions for the differ-
ent fluxes included in the mathematical model. The optimal quantity to measure would
be flux f33 which represents the fecal cholesterol excretion.
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7.3.3 Identification of the optimal quantity to measure

Experimental design was performed targeting a variance reduction of the biliary
cholesterol excretion ( f29). We restricted the analysis to model fluxes. We design
for the mean variance reduction over the entire duration of the treatment. The
standard deviation of a new measurement was set to 0.5 [ln (µmol/h)], which
was based on the observed variability in similar experiments [35]. Figure 7.3
shows the mean variance reduction of f29 when considering measuring different
fluxes in the model. From this figure, we can conclude that overall, the optimal
quantity to measure would be flux f33, which represents the fecal cholesterol
excretion. An additional attractive aspect of measuring this flux is that the ex-
periment would be non-invasive. After selecting measurements that could po-
tentially lead to large variance reductions, time courses of expected reductions
can be computed to determine which time points are optimal measurement can-
didates. An example is shown in Figure 7.4, which reveals that for this output
flux ( f29), the expected variance reduction is fairly insensitive to the measure-
ment time point. Here, the intervals indicate the central 67% of the distribution
of variance reductions obtained.
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Figure 7.4: Time courses of expected variance reductions were computed to determine
whether measuring particular time points result in larger variance reductions. Note that
each figure title indicates the measured flux, while the variance reductions reported corre-
spond to f29. The intervals indicate the central 67% of the distribution of variance reduc-
tions obtained via the SVR method.

Subsequently, we investigated the efficacy of adding more than one addi-
tional measurement. When considering measurements on fecal matter, increas-
ing the sampling rate is easier to achieve than to add a completely different exper-
imental procedure. The predicted effects of including multiple measurements of
f33 are shown in Figure 7.5. The number of additional measurements was varied
from 2 to 6. The first two measurements correspond to the wild type and the
end time of the treatment. Since dynamics are usually more pronounced early
on during treatments, measurements were added in such a way that the early
stage of the intervention was sampled more densely. This was accomplished by
incrementally adding each additional measurement in the middle of the leftmost
time interval. The left panel displays the temporal variance reductions for dif-
ferent numbers of additional measurements. The right panel displays the mean
variance reduction over the entire time series.

As shown in Figure 7.5, 95% of the attainable variance reduction (52%) is
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Figure 7.5: The effect of including multiple measurements of f33 on the variance reduction
was investigated. The number of additional measurements was varied from 2 to 6. Mea-
surements were added in such a way that the early stage of the intervention was sampled
more densely. This was accomplished by incrementally adding each additional measure-
ment in the middle of the leftmost time interval (indicated by the dotted lines). The left
panel displays the temporal variance reductions for different numbers of additional mea-
surements. The right panel displays the mean variance reduction over the entire time
series.

already attained at the fourth measurement (compared to 54% with six measure-
ments). Note how the effect of a single measurement progressively reduces in
time. This is most apparent in the transition from only including the wild type,
to including the time point at 21 days. Gradually increasing the number of time
points improves the variance reduction over the rest of the time course.

7.3.4 Integration of additional measurements

The computational analysis revealed that including time course measurements
of the fecal cholesterol excretion ( f33) would optimally reduce the prediction
variance of the biliary cholesterol excretion ( f29). The optimal experiments were
performed in C57BL/6J mice treated with T0901317 for 0, 1, 7 and 14 days [35].
Subsequently, the additional data was included and the model analysis was re-
peated. Figure 7.6 shows the resulting distribution of the model predictions of
f29, before (left) and after (right) including the experiments. Note that before the
additional experiments were included, these fluxes could not be predicted accu-
rately. After incorporating the new data, a large reduction in uncertainty was ob-
tained. Furthermore, these constrained predictions are in good agreement with
data on f29 of untreated mice and mice treated with T0901317 for 14 days [35].
Note that latter data was not included in the optimization procedure, but serves
as model validation. Also note that the experiments required to obtain a direct
measurement of this flux are highly invasive and require more effort than the
measurements on fecal matter.

To validate the methodology, we computed the expected change in variance
for the other fluxes upon including the chosen experiments. To get an idea of the
uncertainty associated with the true decrease in variance, we resampled the post-
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Figure 7.6: Data was acquired of the fecal cholesterol excretion ( f33) in C57BL/6J mice
treated with T0901317 for 0, 1, 7, and 14 days [35]. Subsequently, the additional data
was included and the model analysis was repeated. Plots indicate trajectory densities
(2-dimensional histogram) of the biliary cholesterol excretion ( f29). Note how, before
performing the experiments, the adaptation upon LXR activation could not be predicted
accurately. After including the selected experiments, a large reduction in uncertainty is
obtained. Furthermore, these constrained predictions are in good agreement with data of
mice treated with T0901317 for 14 days [35]. Note that latter data was not included in the
optimization procedure but serves as model validation.

experiment distribution. Different subsets are drawn from the post-experiment
distribution and used to compute the variance. As shown in Figure 7.7, the pre-
dicted changes in variance were in good agreement with the true changes.
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Figure 7.7: Change in variance of the fluxes which were not targeted. Grey: True change
in variance. Black: Change in variance as predicted by the proposed methodology. Note
that the x-axis is sorted according to the mean change in true variance.
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7.3.5 Refining predictions of hepatic cholesterol clearance

LXR agonists promote the excretion of cholesterol from the body. Figure 7.6 (right
part) shows that this adaptation is partly caused by a progressive increase of
the biliary cholesterol excretion during the first week of the treatment. A topic
for further research could be to study the processes and mechanisms that drive
the increased biliary cholesterol excretion upon LXR activation. One hypothesis
is that the increased hepatobiliary cholesterol excretion is accomodated by an
increased uptake of cholesterol by the liver from the plasma. In this section, we
aim to design an experiment to more accurately determine how much cholesterol
is cleared by the liver from the plasma (7.16) over the treatment period.

FC = Vplasma( f17 + f21) + f31 (7.16)

To investigate which measurements should be performed to decrease our un-
certainty, we set up a 2D matrix representing combinations of potential flux mea-
surements. We sample this matrix using an iterative approach. The sampling
is initialized by randomly sampling the experiment matrix. Subsequently, the
positions of a fraction νNsamples of these samples are resampled proportionally to
the determined variances. These positions are then perturbed and the variances
at the new positions are computed. The remaining (1 − ν)Nsamples positions are
discarded and replaced with randomly sampled positions. This procedure itera-
tively samples regions associated with higher variance reductions more densely.
As shown in Figure 7.8, we see that specific fluxes are more optimal to mea-
sure than others. Note how measurements of the enterohepatic cholesterol up-
take ( f31) would be most beneficial. Other cholesterol fluxes in- and out of the
intestinal lumen ( f29 and f30) would also result in a large variance reduction.
Finally, similar reductions can be attained by measuring both cholesteryl ester
metabolism ( f4) and cholesteryl ester synthesis ( f3) in the cytoplasm simultane-
ously.

7.4 Conclusions and discussion

Progressive diseases and pharmacological interventions typically affect
processes at various different levels. In many cases, the amount of topological
information available is insufficient to specify a dynamic model. In this work,
we presented a method to design experiments for identifying adaptations in
metabolic networks. It is well suited to situations where insufficient information
is available to mechanistically model the processes that drive these adaptations.
The method works in two distinct steps. The first step employs a methodology
known as ADAPT [25] to iteratively estimate time-dependent model parameters
for a large number of simulated data replicates. ADAPT links the time scale on
which the adaptations occur (typically long) with short-term dynamics.
Whereas larger models are typically plagued by large topological and
parametric uncertainties, lumped approximations are not always considered as
useful for unraveling mechanistic detail. ADAPT tries to balance the two by
incorporating a fairly detailed model of the measurable mass fluxes while
estimating phenomenological changes of its kinetic parameters. As such, it
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enables the incorporation of data at both these levels, allowing information to be
carried over between different phenotypical snapshots [10]. The second step in
our approach uses these time dependent parameter trajectory distributions to
predict measurement efficacies to ascertain which experiment would lead to an
optimal reduction of uncertainty. By iteratively refining the different
trajectories, parameter adaptations can be identified. These can then serve as a
tool to derive hypotheses on the interactions between various components of
the system. Because the design criterion is based on simulated distributions of
predictions and these can be computed for a wide range of model quantities, the
approach is very flexible. Practical limitations of various measurement
technologies often play an important role. Measurements often result in derived
quantities rather than the model states themselves. Fortunately, the current
approach allows incorporation of such measurements directly, since
distributions of such experiments can be simulated. The method provides a
means to design experiments which help elucidate the underlying mechanisms
that drive the response to a treatment intervention.

Aside from its direct applicability, the approach also provides avenues for
future research. Rather than computing spline interpolants, it may be possible to
use parametric probability models such as Gaussian Processes [36]. A Gaussian
Process is a collection of random variables defined by a mean and a covariance
function which relate the different points in the collection. Using the available
data in combination with Bayes Rule, the parameters of such a GP model are
updated to a posterior distribution, from which samples can be drawn. Once
such a Gaussian process is calibrated to data, it can be used to specify a dis-
tribution over the state derivatives. This means that simulating the system of
ODEs would no longer be necessary since the derivatives could be used directly
to infer a posterior parameter distribution. Similar use of GPs has previously
been shown to result in drastic speedups in performing parameter inference on
parameter-constant ODEs [37]. In this work, we used prediction variance as a
measure for efficacy. One could argue that for strongly tailed distributions, vari-
ance has limited descriptive power. In such cases, transformation of the PTD
before performing the experimental design may be desirable. Estimating vari-
ance reductions involves computing weights of the different samples. Here, it
is sensible to compute some metric that reflects how many samples had an ap-
preciable contribution to the estimate by determining the Effective Sample Size
(ESS) [38]. Though we introduced a bias correction to account for bias at low
effective sample sizes, extremely low values for the ESS still indicate imprecise
variance estimates.

Relevant applications of the proposed method are the investigation of
metabolic pathways in relation to progressive diseases such as Type 2 Diabetes
and cardiovascular disease. In the present study, the method was applied to a
multi-compartment model of lipid and cholesterol metabolism to study
metabolic adaptations induced upon pharmacological activation of LXR in mice.
The main focus was to gain additional insight in the beneficial effects of LXR
activation on cholesterol metabolism, i.e., the stimulation of the cellular efflux,
transport, and excretion of cholesterol from the body. The biliary system plays
an important role in this by facilitating the transport of cholesterol and bile acids
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from the liver to the intestinal lumen. However, at present, the adaptation of the
biliary cholesterol excretion flux upon LXR activation could not be predicted
accurately (Figure 7.6, left part). Therefore, additional experiments were
performed to reduce the variance of this flux ( f29). Here, the computational
analysis revealed that the fecal cholesterol excretion ( f33) would be the optimal
quantity to measure (Figure 7.3). An attractive aspect of measuring this flux is
that the experiment would be non-invasive. We showed that the predicted
reductions agreed well with the variances obtained after incorporating
additional experimental data (Figure 7.7). One could argue that the predicted
efficacy of including data on f33 is an expected result, as f29 and f33 both directly
influence the cholesterol content in the intestinal lumen (x15). However, note
that including data on fluxes f32 and f39 (also acting on x15), or fluxes f2, f3, f5,
and f6 (acting on shared metabolite x1) would not result in a significant variance
reduction. The efficacy of including data on f33 is illustrated in Figure 7.6 (right
part). The newly constrained prediction is in good agreement with
independently measured data on f29 of untreated mice and mice treated with
T0901317 for 14 days [35]. Furthermore, the computational analysis provided
the additional insight that the biliary cholesterol excretion increased during the
first week of the treatment and subsequently stabilized upon prolonged
treatment. The method we described provides a means to design experiments
for reducing specific prediction uncertainties in dynamical systems where many
of the regulatory mechanisms are poorly known. By reducing the uncertainties
in these adaptations, we showed that it is possible to iteratively refine
hypotheses on how the metabolic state changes during treatment intervention.
Once sufficiently refined, such trajectory distributions may help disentangle the
effects regulatory mechanisms have on various parts of the system, using only
data on their collective consequences.
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Figure 7.8: Expected variance reduction for the cholesterol clearance from the plasma
when considering two measurements. Each axis corresponds to a different experiment
and the color value indicates the expected variance reduction. Each subdivision indicates
a different measured flux, while the space within each subdivision corresponds to the
different time points.
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7.5 Appendix

Mathematical model

A mathematical model was constructed, which integrates metabolic processes in-
volved in hepatic and intestinal lipid metabolism, as well as plasma lipoprotein
metabolism (Figure 7.2). The model contains five compartments representing the
liver, intestine, intestinal lumen, periphery, and blood plasma. The liver com-
partment includes the production, utilization and storage of triglycerides and
cholesterols, as well as the mobilization of these metabolites to the endoplasmic
reticulum where they are incorporated into nascent produced VLDL particles.
The VLDL particles are subsequently secreted in the plasma where they provide
nutrients for peripheral tissues. The model includes the hepatic uptake of free
fatty acids from the plasma, and the reverse cholesterol transport pathway, i.e.,
the net transport of cholesterol from peripheral tissues back to the liver via HDL.
Moreover, the model includes processes involved in the efflux of cholesterol and
bile acids to the intestinal lumen where they are reabsorbed or excreted from the
body.

State Name Description

x1 xFC Hepatic free cholesterol
x2 xCEcyt

Hepatic cholesteryl ester (cytosol)

x3 xCEER
Hepatic cholesteryl ester (ER)

x4 xTGcyt
Hepatic triglyceride (cytosol)

x5 xTGER
Hepatic triglyceride (ER)

x6 xTGdnlcyt
Hepatic de novo triglyceride (cytosol)

x7 xTGdnlER
Hepatic de novo triglyceride (ER)

x8 xTGVLDL
Plasma VLDL-triglyceride

x9 xCVLDL
Plasma VLDL-cholesterol

x10 xCHDL
Plasma HDL-cholesterol

x11 xFFA Plasma free fatty acid
x12 xBAhep

Hepatic bile acids

x13 xBAlum
Intestinal lumen bile acids

x14 xBAint
Intestinal bile acids

x15 xClum
Intestinal lumen cholesterol

x16 xCint
Intestinal cholesterol

Table 7.1: Description of the state variables included in the model.
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Model equations

The mathematical model contains sixteen metabolic species ~x (Table 7.1) inter-
linked by forty-one flux interactions (Table 7.2). The flux equations are based on
mass-action kinetics. The ordinary differential equations are given by:

d[xFC]

dt
= FFCprod

+ FCEde fcyt
+ FCEde fER

− FFCmet
− FCE f orcyt

− FCE f orER

− FBAprodhep
− FCprodlum

d[xCEcyt
]

dt
= FCE f orcyt

+ FCupthep
− FCEde fcyt

+ Vplasma

(

FCEupthep
+ FCEuptHDL

)

d[xCEER
]

dt
= FCE f orER

− FCEde fER
− FVLDL−CE

d[xTGcyt
]

dt
= FTG f orcyt

− FTG f orER
− FTGmetcyt

+ Vplasma

(

FFFAupt

3
+ FTGupthep

+ FTGhydhep

)

d[xTGER
]

dt
= FTG f orER

− FTG f orcyt
− FVLDL−TGndnl

d[xTGdnlcyt
]

dt
= FTGdnlcyt

− FTGdnlmetcyt
+ FTGdnl f orcyt

− FTGdnl f orER

d[xTGdnlER
]

dt
= FTGdnlER

+ FTGdnl f orER
− FTGdnl f orcyt

− FVLDL−TGdnl

d[xTGVLDL
]

dt
=

FVLDL−TG

Vplasma
− FTGupthep

− FTGuptper
− FTGhydhep

− FTGhydper

d[xCVLDL
]

dt
=

FVLDL−CE

Vplasma
− FCTICE

− FCEupthep
− FCEuptper

d[xCHDL
]

dt
= FCE f orHDL

− FCEuptHDL

d[xFFA]

dt
= FFFAprod

− FFFAupt

d[xBAhep
]

dt
= FBAprodhep

− FBAprodlum
+ FBAupthep

d[xBAlum
]

dt
= FBAprodlum

+ FBAdiet
− FBA f ecal

− FBAuptint

d[xBAint
]

dt
= FBAuptint

− FBAupthep

d[xClum
]

dt
= FCprodlum

+ VplasmaFCTICE
+ FCdiet

− FC f ecal
− FCuptint

d[xCint
]

dt
= FCuptint

− FCupthep

The blood plasma volume, given by Vplasma, was assumed to be 1 mL [39].
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Table 7.2: Overview and description of the fluxes included in the mathematical model.

Flux Name Equation Description

f1 FFCprod p1 Hepatic de novo synthesis of free cholesterol
f2 FFCmet p2[xFC] Net hepatic catabolism of free cholesterol
f3 FCE f orcyt

p3[xFC] Hepatic synthesis of cholesteryl ester (cytosol)

f4 FCEde fcyt
p4[xCEcyt

] Hepatic conversion of cholesteryl ester (cytosol) to free cholesterol

f5 FCE f orER
p5[xFC] Hepatic synthesis of cholesteryl ester (ER)

f6 FCEde fER
p6[xCEER

] Hepatic conversion of cholesteryl ester (ER) to free cholesterol
f7 FTGdnlcyt

p7 Hepatic de novo synthesis of triglyceride (cytosol)

f8 FTGmetcyt
p8[xTGcyt

] Hepatic catabolism of triglyceride (cytosol)

f9 FTG f orcyt
p9[xTGER

] Hepatic transport of triglyceride from the ER to the cytosol

f10 FTGdnlER
p10 Hepatic de novo synthesis of triglyceride (ER)

f11 FTG f orER
p11[xTGcyt

] Hepatic transport of triglyceride from the cytosol to the ER

f12 FFFAupt
p12[xFFA] Hepatic uptake of free fatty acid

f13 FFFAprod
p13 Net efflux of free fatty acid from peripheral tissues to plasma

f14 FVLDL−TG p14([xTGER
] + [xTGdnlER

]) Hepatic secretion rate of VLDL-triglyceride
f15 FVLDL−CE p15[xCEER

] Hepatic secretion rate of VLDL-cholesterol
f16 FTGupthep

p16[xTGVLDL
] Hepatic uptake of triglyceride via whole-particle uptake

f17 FCEupthep
p16[xCVLDL

] Hepatic uptake of cholesterol via whole-particle uptake

f18 FTGuptper
p17[xTGVLDL

] Peripheral uptake of triglyceride via whole-particle uptake

f19 FCEuptper
p17[xCVLDL

] Peripheral uptake of cholesterol via whole-particle uptake

f20 FCE f orHDL
p20 Peripheral efflux of cholesterol to HDL particles

f21 FCEuptHDL
p21[xCHDL

] Hepatic uptake of HDL-cholesterol
f22 FTGhydhep

p18[xTGVLDL
] Hepatic uptake of triglyceride via lipolytic enzymes

f23 FTGhydper
p19[xTGVLDL

] Peripheral uptake of triglyceride via lipolytic enzymes

Continued on next page
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Table 7.2 – continued from previous page

Flux Name Equation Description

f24 FapoBprod
p22 Hepatic secretion rate of apolipoprotein B

f25 FTGdnlmetcyt
p8[xTGdnlcyt

] Hepatic catabolism of de novo triglyceride (cytosol)

f26 FTGdnl f orcyt
p9[xTGdnlER

] Hepatic transport of de novo triglyceride from the ER to the cytosol

f27 FTGdnl f orER
p11[xTGdnlcyt

] Hepatic transport of de novo triglyceride from the cytosol to the ER

f28 FBAprodhep
p23[xFC] Hepatic bile acid synthesis

f29 FCprodlum
p27[xFC] Biliary cholesterol excretion

f30 FCuptint
p28[xClum

] Intestinal cholesterol absorption
f31 FCupthep

p29[xCint
] Hepatic cholesterol uptake (enterohepatic)

f32 FCdiet
p32 Cholesterol intake via diet

f33 FC f ecal
p33[xClum

] Fecal cholesterol excretion

f34 FBAdiet
p30 Bile acid intake via diet

f35 FBA f ecal
p31[xBAlum

] Fecal bile acid excretion

f36 FBAprodlum
p24[xBAhep

] Biliary bile acid excretion

f37 FBAuptint
p25[xBAlum

] Intestinal bile acid absorption
f38 FBAupthep

p26[xBAint
] Hepatic bile acid uptake (enterohepatic)

f39 FCTICE
p34[xCVLDL

] Transintestinal cholesterol excretion
f40 FVLDL−TGndnl p14[xTGER

] Hepatic secretion rate of non de novo VLDL-triglyceride
f41 FVLDL−TGdnl p14[xTGdnlER

] Hepatic secretion rate of de novo VLDL-triglyceride
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Calculation of the VLDL particle diameter

The following approach was used to calculate nascent VLDL particle diameters
(DVLDL). Since each VLDL particle contains one apolipoprotein B particle, the
number of triglyceride and cholesterylester molecules per VLDL particle can be
determined by correcting the specific lipid fluxes for the number of apolipopro-
tein B proteins. The core volume of a VLDL particle was subsequently deter-
mined assuming a molecular volume of 946.84 mL/mol for triglyceride (TGmv)
and a molecular volume of 685.48 ml/mol for cholesterylester (CEmv) [40]. A core
radius (Rc) was calculated from the core volume assuming a spherical shape of
the VLDL particles. Furthermore, the particle membrane accounts for an addi-
tional two nanometers (Rs) [41].

DVLDL = 2 (Rc + Rs) (7.17a)

Rc =
3

√

3Vc

4π
(7.17b)

Vc = 1021 TGcnt · TGmv + CEcnt · CEmv

NA
(7.17c)

TGcnt =
FVLDL−TG

FapoBprod

(7.17d)

CEcnt =
FVLDL−CE

FapoBprod

(7.17e)

Where NA is the constant of Avogadro.

Calculation of de novo lipogenesis

The fractional contribution of de novo lipogenesis was calculated as follows in the
computational model:

FCDNL(t) =
[xTGdnlcyt

](t) + [xTGdnlER
](t)

[xTGcyt
](t) + [xTGER

](t) + [xTGdnlcyt
](t) + [xTGdnlER

](t)
(7.18)

Calculation of the VLDL catabolic rate

The VLDL catabolic rate was calculated as follows in the computational model:

CRVLDL(t) =
p16(t) + p17(t)

p16(t0) + p17(t0)
(7.19)
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Experimental procedures

Animals and experimental design

Male C57Bl/6J mice (Charles River, L’Arbresle Cedex, France) were housed in a
light- and temperature-controlled facility (lights on 6:30 AM-6:30 PM, 21 °C) and
fed a standard laboratory chow diet (RMH-B, Abdiets, Woerden, The Nether-
lands) containing T0901317 (0.015% wt/wt; ∼ 50 mg/kg) for 1, 2, 4, 7, 14, or 21
days. Untreated controls received non-supplemented laboratory chow. After 1
day, 7 days, and prior to sacrifice on day 14, a small blood sample was taken
from 4-h fasted (8-12 AM) mice by tail bleeding to evaluate plasma lipoprotein
profiles. All animals had free access to drinking water. During the final 24-hours
of the treatment period, the different groups of mice received sodium [1-13C]-
acetate (99 atom %, Isotec/Sigma-Aldrich, St. Louis, MO) via the drinking water
(2%). On the last treatment day, 4-h fasted (8-12 AM) animals were sacrificed
by cardiac puncture under isoflurane anaesthesia. Livers were quickly removed,
freeze-clamped and stored at -80 °C. Blood was centrifuged (4000xg for 10 min-
utes at 4 °C) and plasma was stored at -20 °C. Experimental procedures were
approved by the Ethics Committee for Animal Experiments of the University of
Groningen.

Liver and plasma metabolites and plasma lipoprotein analysis

Plasma lipoproteins were separated by fast protein liquid chromatography
(FPLC) gel filtration using a superose 6 column (GE Healthcare, Uppsala,
Sweden) [42]. Triglyceride contents of the collected FPLC fractions were
determined using a commercially available kit (Roche Diagnostics, Mannheim,
Germany). Plasma non-esterified fatty acid profiles were analyzed as previously
described [43]. Frozen liver was homogenized in ice-cold PBS. Hepatic
triglyceride and total cholesterol contents were assessed using commercial
available kits (Roche Diagnostics) after lipid extraction [44]. Hepatic triglyceride
fractions were obtained from lipid extracts using Isolute SPE NH2 columns
(Biotage AB, Uppsala, Sweden) [45, 46].

Fractional contribution of de novo lipogenesis

Hepatic triglyceride fractions obtained by lipid extraction were hydrolyzed, and
the free fatty acids were extracted and derivatized [47]. The fatty acid-mass iso-
topomer distributions were determined by GC-MS and used in mass isotopomer
distribution analysis (MIDA) to calculate fractional palmitate and oleate synthe-
sis rates from de novo lipogenesis [47].

Quantification of VLDL-TG production rates

Separate groups of mice were injected intravenously with Triton WR1339 (0.5
g/kg body weight) as a 125 mg/mL solution in PBS after a 4-hour fast (8-12
AM). Blood samples were drawn by retro-orbital bleeding into heparinized tubes
at 0, 30, 60, 120, and 240 min after injection. After the last blood draw, animals
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were sacrificed by cardiac puncture under isoflurane anaesthesia. Blood was cen-
trifuged (10 minutes, 4000xg) to obtain plasma. Plasma triglyceride levels and
triglyceride production rates were determined as described [48]. Nascent VLDL
(d< 1.006) was isolated from the final plasma sample of each animal using a
Optima TM LX tabletop ultracentrifuge (Beckman Instruments Inc., Palo Alto,
CA) at 108,000 rpm for 150 minutes.

Determination of nascent VLDL composition and particle size

Triglyceride, cholesterol and phospholipid concentrations of the nascent VLDL
particles were determined using commercially available kits (Roche Diagnostics
and Wako Chemicals). Protein concentrations were determined using the BCA
Kit (Pierce, Rockford, IL). VLDL particle diameter D was estimated according
to [49] using the following formula: D = 60 · ((0.211 · TG/PL) + 0.27)), where D
is given in [nm].

Quantification of VLDL catabolic rates

VLDL was isolated from pooled plasma of fasting healthy human subjects by
ultracentrifugation (d< 1.006). VLDL was iodinated using the iodine monochlo-
ride method [50]. Free iodine was removed by passing over a PD-10 column (GE
Healthcare, Diegem, Belgium) followed by extensive dialysis against PBS. More
than 95% of the VLDL radioactivity was precipitable by trichloroacetic acid, and
less than 6% of the radioactivity was associated with the lipid fraction of VLDL.
Separate groups of mice were injected with 0.5 Ci of 125I-VLDL via the tail vein
after a 4-hour fast (8-12 AM). Blood samples were taken by retro-orbital bleeding
after 0, 15, 30, 60, 120 and 240 minutes and plasma radioactivity was determined
using a Cobra II γ counter (Packard Instruments, Downers Grove, IL). Plasma de-
cay curves for the tracer were generated by dividing plasma radioactivity at each
time point by the radioactivity present at the initial 1min time point. Fractional
catabolic rates were calculated from the area under the plasma disappearance
curves fitted to a bicompartmental model using SAAM-II (version 1.2.1; SAAM
Institute, University of Washington, Seattle, WA) [42].

Immunoblotting procedures

Protein concentrations in liver homogenates containing protease inhibitors
(Complete; Roche Diagnostics) were determined using the BCA Kit (Pierce).
Volumes of VLDL containing equal amounts of triglyceride were pooled and
lipids were extracted with methanol and cold ether. The remaining VLDL
proteins were subjected to SDS-PAGE. Apolipoprotein B100 and apolipoprotein
B48 were determined using antibodies against antimouse apoB raised in rabbit
(Biodesign, Saco, ME). Horseradish peroxidase-conjugated antirabbit antibodies
from donkey (Amersham Pharmacia Bioscience, GE Healthcare) was used as a
secondary antibody for all immunoblots. Protein bands were detected using
SuperSignal West Pico Chemiluminescent Substrate System (Pierce).
Band-densities were determined by using a Gel Doc XR system (Biorad,
Hercules CA, USA).
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Monte Carlo sampling of data interpolants

To enable the estimation of dynamic trajectories of metabolic parameters and
fluxes, continuous dynamic descriptions of the experimental data were used as
input for the computational approach. For this purpose, cubic smoothing splines
were calculated that describe the dynamic trend of the experimental data. To
account for experimental and biological uncertainties a collection of splines was
calculated using a Monte Carlo approach. Random samples based on the exper-
imental data were generated assuming Gaussian distributions with means and
standard deviations of the data. Subsequently, for each generated sample a cubic
smoothing spline was calculated. An overview of the experimental data is pre-
sented in Figure 7.9. A darker color represents a higher density of trajectories in
that specific region and time point. The data is represented by means ± standard
deviations, with an exception for the experimental data obtained via FPLC mea-
surements. These measurements were performed on pooled mice plasma and
are represented by the white dots. Measures of spread used for the Monte Carlo
sampling of these quantities were estimated based on similar experiments that
were performed [35]. An overview of the quantities that were experimentally
observed and its relation to corresponding model components is presented in
Table 7.3. Note that model output y13 was only experimentally observed for the
untreated phenotype [33].

Table 7.3: Overview of the quantities that were measured and its relation to corresponding
model components.

Measurement Output Equation

Hepatic triglyceride y1 [xTGcyt
] + [xTGER

] + [xTGdnlcyt
] + [xTGdnlER

]

Hepatic cholesteryl ester y2 [xCEcyt
] + [xCEER

]

Hepatic free cholesterol y3 [xFC]
Plasma total cholesterol y4 [xCVLDL

] + [xCHDL
]

HDL-cholesterol y5 [xCHDL
]

Plasma triglyceride y6 [xTGVLDL
]

Plasma free fatty acid y7 [xFFA]

VLDL TG/C ratio y8
TGcnt

CEcnt
VLDL diameter y9 DVLDL

VLDL-TG production y10 FVLDL−TG

VLDL catabolic rate y11 CRVLDL

De novo lipogenesis y12 FCDNL

Hepatic HDL-C uptake y13 FCEuptHDL
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Figure 7.9: Experimental data and interpolants. An overview of the experimental data,
as well as corresponding 2D histograms of the splines that were used as input for ADAPT,
is presented. Data is represented by means ± standard deviations (N=5-6), with an ex-
ception for the experimental data obtained via FPLC measurements. These measurements
were performed on pooled mice plasma and are represented by the white dots. The white
lines enclose the central 67% of the interpolant density at each time point.
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Bias correction weighted variance

The bias correction for the weighted variance can be derived as follows

E
[

σ2
b

]

= E

[

∑
i

wi(xi − µ̂)2

]

= E

[

∑
i

wi ((xi − µ)− (µ̂ − µ))2

]

= E

[

∑
i

wi (xi − µ)2

]

+ E

[

−2 ∑
i

wi(xi − µ)(µ̂ − µ) + ∑
i

wi(µ̂ − µ)2

]

= σ2 − E
[

(µ̂ − µ)2
]

= σ2 − E





(

∑
i

wi(xi − µ)

)2




= σ2 − E

[

∑
i

∑
j

wiwj(xi − µ)(xj − µ)

]

= σ2 − E

[

∑
i

∑
j

wiwj

(

xixj − (xi + xj)µ + µ2
)

]

= σ2 − ∑
i

∑
j

wiwj

(

E[xixj]− E[(xi + xj)]µ + µ2
)

(7.20)
For i 6= j the double summation cancels out since

E[xixj] = E[xi]E[xi] = E[xi]
2 = µ2 (7.21)

which leads to

µ2 − 2µ2 + µ2 = 0 (7.22)

For i = j

E[xixi] = E[x2
i ]. (7.23)

therefore

σ2
b = σ2 − ∑

i

w2
i

(

E[x2
i ]− E[(xi)]

2
)

= σ2 − ∑
i

w2
i σ2 (7.24)

The unbiased weighted variance is given by

σ2 =
1

1 − ∑i w2
i

σ2
b (7.25)
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Figure 7.10: On the top row, variance reductions based on the analytic solution are shown.
On the second row, the difference between the analytic and sampled solution are shown
for the biased estimates. The bottom row shows the difference to the analytic solution
after bias correction.

With the effective sample size (ESS) defined as:

ESS =

(

N

∑
i=1

w2
i

)−1

(7.26)

This results in:

σ2 =
ESS

ESS − 1
σ2

b (7.27)

To test the bias correction, expected variance reductions were computed for
several multivariate Gaussians. Each experiment, a distribution of 500 samples
was simulated using means [5, 10, 11] and standard deviations [40, 10, 20]. The
correlation coefficients between different components were [0.1, ρ1,3, 0.5] where
the correlation coefficient between observable 1 and 3 was varied. Accuracies for
the measurement of state 3 were also varied. Differences between analytical and
sampled estimates are depicted in Figure 7.10.

As shown in Figure 7.10, without the correction, bias is more pronounced
when there is little correlation and little measurement uncertainty. Without cor-
rection for the low ESS, these result in artificially large estimates for the variance
reduction. On the bottom row the unbiased estimate is shown.
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8.1 General perspective

Over the recent years, Systems Biology has seen a striking increase in the com-
plexity of the models under investigation. Since close collaborations between
modelers and experimentalists are still rare, the available data suitable for dy-
namic modeling has not followed this trend. The time and resource consuming
nature of data generation is still a bottleneck. Especially when considering the
additional effort that is required to make it suitable for modeling. The incorpora-
tion of a new data set typically involves introducing additional parameters and
simulation schemes to mimic the experimental procedure performed to obtain
the data [1]. Often data is expressed as ratios, is measured in steady state or
requires scaling factors in order to match observations with model outputs [2,3].
Furthermore, as shown in Chapter 6, lack of knowledge regarding the exper-
imental conditions can render data ill suited for inference due to the fact that
incorporating the data requires the addition of so many additional unknown
parameters that the data hardly provides any constraints on the other param-
eter values. The situation is further exacerbated by the fact that the biological
questions we wish to answer necessitate models of a certain complexity. Conse-
quently, there is often a mismatch between the information content in the data
and the complexity of the model whose parameters we wish to infer. Such a
mismatch can result in large uncertainties in the predictions.

Interestingly, this gives rise to various approaches for mathematical model-
ing. Some physically based modelers believe that all model structures and associ-
ated parameters can be defined a priori and that additional parameter estimation
or uncertainty analysis is not necessary or even undesirable since the predictions
are based on a physically correct model of reality. The model parameters are
often taken from literature data or estimated from different experiments. In this
paradigm, predictions which deviate from their observed counterparts constitute
a failure of the model and result in extending or changing the model. These ap-
proaches seem a remnant from an extremely reductionist paradigm whose aim
was to characterize the individual components and subsequently reconstitute the
system from its parts. Though appealing because of its simplicity, such a stand-
point does not seem maintainable considering several recent publications on the
effects of parameter uncertainty in these models [2,4–9]. These (and other) publi-
cations revealed that even medium-sized models are often plagued by highly un-
certain predictions. Rejecting a model based on such highly uncertain predictions
is unwarranted and results in unnecessarily complex models. Moreover, param-
eter values in literature are rarely reported along with an assessment of their
identifiability. An additional complication with this approach is that enzymes
and proteins tend to behave differently in vivo than in vitro [10]. Whether this
is merely attributable to missing interaction mechanisms [11], post-translational
modifications, the composition of the experimental medium [12,13] or variations
between cells [14] is unclear.

Another popular approach is to make subjective decisions on which param-
eters are considered adjustable and perform parameter estimation and model
sensitivity analyses over predefined physiological ranges [1, 3, 15, 16]. This form
of uncertainty analysis is highly pragmatic and can work well when one ensures
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that all uncertainties relevant to the problem under investigation are sufficiently
probed, and, the assumptions regarding the physiological ranges are justified.
The effects of assumptions such as the adjustability of a parameter or the con-
sequences of changing the predetermined ranges or assumed prior distributions
are rarely reported in literature. More often than not, the information reported
in scientific literature contains insufficient information to reproduce analyses,
which makes subsequent follow-up work unnecessarily cumbersome and error
prone.

Finally, there is a third group of modelers who quantify the uncertainty asso-
ciated with their models and data, propagating these uncertainties to the various
predictions [14, 17–19]. In some cases, such uncertainties can even be averaged
over multiple models. These approaches are generally hampered by a signifi-
cantly larger computational burden when compared with more straightforward
point estimates or sensitivity analyses. Though recent advances in computa-
tional resources and methodology have made these approaches somewhat more
tractable, such uncertainty analyses are often performed at the expense of mech-
anistic detail and have mostly been performed on models that either describe
systems on a small scale or which are fairly rough approximations to reality.
Rough approximations, which in terms of revealing mechanistic detail, are not
always considered as useful as the original (albeit uncertain) model.

The scientific literature which deals with the methodology required to per-
form uncertainty analysis is often rather technical and specific research problems
require specialized approaches. The threshold for deciding to invest in gaining
the required expertise to apply such methodologies is high for a group which
is mostly interested in studying a biological process or phenomenon. Especially
considering that the short term payoff (more certain conclusions and more infor-
mative experiments) is not immediately evident. Though recent years have seen
some improvements in terms of deciding on standards for model-based conclu-
sions in computational biology, there is still no consensus on what is consid-
ered acceptable. One could argue that the field needs more accessible and user-
friendly methods (or packages) since diagnosing and tackling both numerical
and theoretical issues still requires a great deal of practical experience and pa-
tience. Some software packages exist (e.g. BioBayes, ABC-Sysbio, PottersWheel)
but user documentation is typically sparse and solutions to potential pitfalls are
rarely documented. Consequently, it seems more realistic to tackle biochemical
problems in multidisciplinary teams containing at least one expert on inference
and prediction.

Any form of uncertainty analysis contains subjective decisions and it is un-
realistic to demand complete objectivity. Depending on the formalism of choice,
necessary choices range from prior distributions to assumptions regarding the
observational errors or which topologies and reaction mechanisms to include in
the analysis. An important issue for future research is that such assumptions and
their associated motivations have to be made explicit, so that their validity can
be discussed and follow-up studies can be performed. Hopefully projects such
as MIASE, a guideline for reporting simulation experiments [20], will lead to full
disclosure of such information. This way, approaches that turn out to be effective
in practice can be adopted by others and a consensus on required standards for
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different types of analyses can be reached.
Despite the difficulties it poses, the future of the field of Systems Biology de-

pends on accurately exploring and reporting the magnitude and consequences of
the uncertainty present in our mathematical models, inferences and predictions.
It is also crucial to find a means to communicate how these uncertainties affect
the information we can extract from additional experimental data to experimen-
tal partners, so that they can measure or control a sufficient number of boundary
conditions (i.e. experimental conditions) to improve the informativeness of the
acquired data. We have shown that the statistical uncertainties in our mathe-
matical models can typically be probed and used to design experiments which
effectively reduce those uncertainties relevant to the question being answered. It
has also become clear that specific combinations of experiments are vastly more
informative than others due to the relations that exist between the various un-
certainties. As demonstrated, knowledge of the uncertainties in the model can
drastically improve how informative a new set of measurements will be, and,
can save both time and money.

This thesis provided some practical approaches particularly suitable for
modeling biochemical systems. Various aspects of the proposed methodologies
would benefit from additional research, however. The following sections list a
few avenues that can be explored in the future.

8.2 DGAT model

Chapter 6 presented a first generation model of the diacylglycerol transferase
system. The available data was not informative enough to make precise pre-
dictions, however. Neither the relative contribution of the DGAT enzymes or
the steady state levels of DAG and FA in the cytosol and endoplasmic reticulum
could be predicted with finite uncertainty bounds. During the analysis, it became
apparent that better characterization of the different experimental conditions is
required to be able to incorporate the activity data. Additionally, rough estimates
of the model boundary conditions would be beneficial for inference. The DGAT
enzymes form the last and most important step in the production of triglycerides.
Having a well parameterized mechanistic model of triglyceride production could
be used to improve the predictions of the model presented in Chapter 7. In-
cluding a mechanistic model of the DGAT enzymes would allow incorporation
of different DGAT perturbation experiments when performing inference on the
overarching model.

8.3 Sequential importance sampling

The approach presented in Chapter 4 can suffer from under-sampling issues dur-
ing the importance sampling step. This is especially an issue when multiple
highly informative experiments are planned simultaneously. Recent advances in
Sequential Monte Carlo sampling which involve resampling such a distribution
and then subsequently perturbing and reweighting the different samples could
potentially be used to increase the effective sample sizes at a reasonable cost.
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8.4 Better approximations to the posterior predictive

In Chapters 4, 5 and 7, the design of experiments was separated from sam-
pling from the posterior predictive or parameter trajectory distribution. One ad-
vantage of this approach is that searching for the optimal experiment amongst
a list of experimental candidates does not require any additional model simu-
lations. Moreover, algorithms based on sequential importance sampling could
be considered for the overarching problem of finding the best experiment. As a
proof of principle, a sampler based on ideas from Sequential Importance Sam-
pling was implemented and presented in the Appendix of Chapter 5. Even with
relatively simplistic perturbation kernels, improved sampling efficiences were
attained. Nevertheless, finding kernels better suited to these types of problems
and determining optimal settings that work well in higher dimensions provide
an interesting avenue for future research.

8.4 Better approximations to the posterior predictive

The Posterior Predictive Distribution contains a wealth of information regarding
the relations between model predictions, parameters and data. The methodol-
ogy discussed in Chapters 2 and 3 can aid in obtaining a representative sample
from this distribution. Subsequently, this sample was used in Chapter 4 to pre-
dict distributions of variance reductions. Although this is indeed a measure of
prediction spread, this quantity is less descriptive when considering very poorly
constrained, non-symmetric distributions. Another issue with these distributions
is that the tail is typically sampled rather sparsely. One avenue for future research
is finding suitable approximating functions for these probability densities in high
dimensions. Aside from the beneficial effect it would have on the model selection
procedure presented in Chapter 5, it would also allow extension of the method
in Chapter 4 to other quantities for determining information gain such as the
Kullback-Leibler divergence upon a new measurement or the Mutual Informa-
tion between different predictions.

Finding such density approximations and studying their applicability to
study the relations between uncertainties in the model remains an open
problem however. In low dimensions, and for well behaved distributions,
Kernel Density Estimation (KDE) is often employed (see Chapter 5). Here the
probability density at a point is estimated by considering a sum of probability
kernels K placed on the individual samples. Consider the extreme case where
two predictions are functionally related versus an uncorrelated pair. It is clear
that the former will be more susceptible to bias as the structure is sharper and
therefore more sensitive to the use of diffuse kernels for density estimation. One
avenue to explore could be kernel density estimation on Riemannian
manifolds [21] for the parameters and extending such methodology to the
predictions via local linearization. Alternatively one could consider estimators
based on k-Nearest Neighbours (kNN) such as the ones used in Chapter 5.
Though these typically tend to scale with the local density of the distribution
quite naturally, kNN estimators suffer from slower convergence than their KDE
counterparts [22].
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8.5 Parameter trajectory distributions

In Chapter 7, a methodology was introduced for performing experiment design
in cases where specific regulatory mechanisms are unknown. By iteratively re-
estimating parameters in time, distributions of parameter values with respect to
time are obtained. Currently, this is performed by combining a Monte Carlo re-
sampling of the data in combination with successive optimization. Although this
was sufficient for the presented case, where all the parameters were continually
reoptimized, it is problematic when attempting to keep certain parameters fixed.
This is problematic since the optimization is performed locally, while a fixed pa-
rameter should be estimated over the entire time course. Future work could
make use of a fully probabilistic approach by using Gaussian Processes to ob-
tain time dependent distributions of the data. Smoothing could be handled more
implicitly by specifying specific covariance functions, while non-identifiability
could be mediated by assuming appropriate prior distributions on the parame-
ters. Since the Gaussian Process also specifies a distribution over the state deriva-
tives, simulating the system of ODEs would no longer be necessary since the
relation between the states and their derivatives are known. Similar use of GPs
has previously been shown to result in drastic speedups in performing parame-
ter inference on parameter-constant ODEs [23]. Another alternative would be to
parameterize the parameter trajectories using certain low-order approximations
and use classical inferential techniques to obtain posterior parameter trajectory
distributions.

8.6 Concluding remarks

Unraveling the mechanisms that drive biological systems is a challenging task.
Trying to infer mathematical models from experimental data is fraught with chal-
lenges that often require subjective decisions. Though new experimental and
computational technologies are helping us to more reliably and objectively in-
fer system properties and make predictions, both biological variability and sys-
tem complexity complicate analyses of larger systems considerably. It seems that
there is still a gap between groups working on methodology and groups involved
in the development of new models and measurement technologies. Hopefully,
the contributions presented in this thesis will help consolidate these somewhat.
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through receptor endocytosis govern insulin signaling as revealed using a parameter-free
modeling framework. Journal of Biological Chemistry 2010, 285(26):20171.

[7] Girolami M, Calderhead B: Riemann manifold langevin and hamiltonian monte carlo meth-
ods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2011, 73(2):123–214.

[8] Calderhead B, Girolami M: Statistical analysis of nonlinear dynamical systems using differ-
ential geometric sampling methods. Interface Focus 2011, 1(6):821–835.
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A. Markov Chain Monte Carlo Sampler

This chapter contains some of the implementational details of the Markov
Chain Monte Carlo (MCMC) sampler used in this thesis. MCMC is a technique
used to obtain samples from probability distributions known only up to a

normalizing factor. Given that p(~θ) is a non-negative integrable function, the
Metropolis Hastings algorithm will provide a sequence of samples (also known

as chain) whose equilibrium distribution is proportional to p(~θ) using only

evaluations of p(~θ). A sufficient condition to ensure that p(~θ) is the equilibrium
distribution is that the sampler satisfies detailed balance (A.1) where π(.)
corresponds to the invariant distribution and k(x, y) corresponds to the
distribution used for proposing the next step (the proposal distribution). This
property ensures that the chain is reversible (two sides are equal).

π(x)k(x, y) = π(y)k(y, x) (A.1)

The Metropolis algorithm ensured detailed balance by using only symmet-
ric proposals (where the probability density of going from x to y is equal to
the probability density of going from y to x, i.e. the proposal distribution does
not change). A generalization by Hastings lead to an additional term in the
acceptance probability which ensures detailed balance for non-symmetric pro-
posal distributions. The resulting algorithm, named the Metropolis-Hastings al-
gorithm proceeds by iteratively performing a number of steps:

• 1. Generate a sample~θn+1 from a proposal distribution based on the current
state.

• 2. Compute the likelihood p(yD|~θn+1) at ~θn+1 and calculate p̃(~θn+1|yD) =

p(yD|~θn+1)p(~θn+1), where p(~θn+1) refers to the prior probability density
function.

• 3. Draw a random number γ from a uniform distribution between 0 and 1

and accept the new step if γ < min

(

p̃(~θn+1|yD)Q(~θn+1→~θn)

p̃(~θn |yD)Q(~θn→~θn+1)
, 1

)

.

The ratio of Q is known as the Hastings correction and ensures detailed bal-
ance. It corrects for the fact that the probability density going from parameter set
~θn to ~θn+1 and ~θn+1 to ~θn is unequal when the proposal distribution depends on
the current parameter set. It is defined as the ratio between the proposal densi-
ties associated with going from iteration n to n + 1 and n + 1 to n. The apparent
simplicity of the algorithm makes it conceptually attractive.

Proposals

To accelerate convergence, our implementation adapts to the local geometry of
the problem by taking larger steps in directions where the posterior probabil-
ity density does not change much. Implementationally, we employ an adaptive
Gaussian proposal distribution whose covariance matrix is based on a quadratic
approximation to the logarithm of the probability density function [1]. This ma-
trix is computed by taking the inverse of an approximation to the Hessian matrix.
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Figure A.1: Snapshot of the different proposal kernels as the Markov Chain Monte Carlo
progresses. Note how it adapts to the local curvature.

.

As depicted in Figure A.1, this approach allows the sampler to follow the curva-
ture of the probability density function naturally.

The d-dimensional Gaussian distribution is characterized by a positive defi-
nite covariance matrix Σ and a vector of mean values ~µ:

G(~x) =
1

(2π)
d
2
√

|Σ|
e−

1
2 (~x−~µ)T

Σ
−1(~x−~µ) (A.2)

To sample from this Gaussian proposal distribution, we compute a decom-
position such that RRT = Σ. Subsequently we draw a vector ~z of d indepen-
dent normal variates. Therefore the expression for the next iteration becomes
~θn+1 = ~θn + R~z. Since the proposal distribution depends on the current state
(asymmetric proposals), it needs to be corrected for the imbalance in proposal
densities using the Hastings correction, which can be calculated for a multivari-
ate Gaussian proposal distribution as:

Q(~θn → ~θn+1) =
1

√

|Σn|
e−

1
2 (
~θn+1−~θn)T

Σn
−1(~θn+1−~θn) (A.3)

Calculating the Hessian of the log-likelihood is costly and numerically chal-
lenging, which is why an approximation based on the sensitivities of the model
residuals is used. Depending on the model, these can either be computed by
solving the sensitivity equations and applying the chain rule on the functions
describing the observables or by means of finite differences (for which strict tol-
erances are required to ensure reliable derivatives). Analogously to the approxi-
mate Hessian of the log-likelihood, the Hessian of the log-prior is also approxi-
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mated by its linear sensitivities. Though exact expressions for the Hessian of the
logarithm of the prior can be derived for a wide range of prior distributions, they
can result in the Hessian no longer being positive definite which is problematic
when computing the decomposition required for generating samples.

When the noise variance of the error model is unknown, it has to be treated
as a parameter and estimated from the data. This additional parameter requires
explicit inclusion of the constant K which normalizes the likelihood. This is
incorporated as an additional element in the vector of squared residuals. The
approximated Hessian is subsequently decomposed using the singular value de-
composition:

H = USVT (A.4)

where S is a diagonal matrix containing the singular values and U the matrix
of singular vectors. Large singular values correspond to singular vectors which
point in directions where the probability density function changes rapidly (i.e.
well constrained), while low values correspond to poorly constrained directions
in parameter space. In practical cases, some directions in parameter space can
be so poorly constrained that this leads to a (near) singular Hessian (some sin-
gular values near zero). As a result, the proposal distribution (which is based
on an pseudo inverse of this matrix) will become extremely elongated in these
directions. Consequently, proposals are generated where parameters take on ex-
treme values and acceptance ratios decline due to either integration failures or
rejections (due to low probability). One approach to avoid such numerical dif-
ficulties is to set singular values below a certain threshold to a specific minimal
threshold (prior to inversion). Informally, this threshold can be interpreted as a
circular region in which the Gaussian approximation to the log-posterior density
is considered a reasonable approximation. The covariance matrix of the proposal
distribution is computed directly from the SVD using:

R =
s
√

T√
d

V
√

S−1 (A.5)

Here s corresponds to a problem specific (tuned) scaling factor, T to the tem-
perature and d to the number of parameters. The inverse required for the Hast-
ings correction can subsequently be computed as:

Σ
−1 =

Ndim

s2T
VSVT (A.6)

Since the determinant only appears in ratios and we consider MCMC algo-
rithms where the number of parameters do not change, the factors cancel out.
Therefore the ratio is computed as a product of the ratios of the singular values.

det(Σ) =

(

Ndim

s2T

)−Ndim

∏
1

Sii
(A.7)
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Parameter representation

To deal with the large difference in scale between the various parameters, we typ-
ically consider log-transformed model parameters. Since the prior distribution is
not invariant of model parameterization, a correction for this transformation is
required. The transformation between parameters can be described by the matrix
of partial derivatives with respect to the equations which transform the param-
eters from one parameterization to another (the Jacobian of the transformation).
Similar to a change of variables in integration, the correction factor required for
the prior distribution is given by the absolute value of the determinant of the
Jacobian of the transformation. This corrects for the stretching and compression
of the distribution due to the reparameterization.

p( f (~θ)) = p(~θ)

∣

∣

∣

∣

∣

∣

∣

∣




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

d f (θ1)
dθ1
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∣
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(A.8)

In the case where we perform the MCMC in logarithmic space, we obtain the
following expression:

|J(θa)|
∣

∣J(θb)
∣

∣

=
Npars

∏
i

(

θb
i

θa
i

)

(A.9)

which should be included in the acceptance probability. For the Hessian
based approach, the proposals can subsequently be generated using the follow-
ing equation:

~θn+1 = ~θneN(0,Σln) (A.10)

Where the Hessian approximation in log-space is computed by applying the
chain rule:

δ2L(~θ)

δ ln θiδ ln θj
=

δ2L(~θ)

δθiδθj
θiθj (A.11)

Metropolis Coupled MCMC

To improve mixing in multi-modal problems, we implemented Metropolis Cou-
pled MCMC (MC3) [2]. In MC3, multiple chains are simulated simultaneously,
while allowing them to interact between parameter updates. In our implementa-
tion, each chain can optionally run at a different temperature T:

pT(y
D|~θ) = p(yD|~θ) 1

T (A.12)

One advantage of using multiple temperatures is that the likelihood function
will flatten out for higher temperatures. Consequently, chains at higher temper-
atures are able to traverse the parameter space more freely. Interactions between
the chains are implemented in the form of switch moves. These are performed
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by either randomly selecting two adjacent temperatures and computing a switch
probability based on a Metropolis-Hastings acceptance probability [2]:

α < min





p(yD|~θn+1)
1

Tn p(yD|~θn)
1

Tn+1

p(yD|~θn)
1

Tn p(yD|~θn+1)
1

Tn+1



 (A.13)

or by assigning one ’mother-chain’ which is involved in every interaction [3].
In the current implementation, regular MCMC updates are performed per pa-
rameter group while exchange moves enable the sampler to switch the parame-
ters between two groups.

Autocorrelation

An MCMC sampler will generate samples that are often highly correlated. To get
an idea of how well the chain is mixing, one can plot the autocorrelation function
of an observable or parameter. Such correlations decrease approximately expo-
nentially suggesting that the chain decorrelates as it progresses. Informally, a
sample drawn a certain number of iterations later is no longer closely related to
the initial one. Slowly decaying autocorrelations are a warning sign that the chain
is mixing slowly for that observable or parameter. Estimates of the effective sam-
ple size (ESS) are obtained using the initial monotone sequence estimator [4]. The
ESS is computed from the empirical autocorrelation ρ(t). First, the sum of adja-
cent pairs of autocorrelations φ(t) = ρ(2t) + ρ(2t + 1) is defined. Subsequently
monotonicity is enforced by setting each subsequent φ(t) to the minimum of the
preceding ones. Then b is chosen such that φ(t) is positive for 1...b. The ESS is
then given by:

ESS =
M

−1 + 2 ∑
b
t=0 φ(t)

(A.14)

where M denotes the number of samples in the MCMC chain. Because of the
highly correlated nature of MCMC chains, results are often thinned (i.e. using
only every mth iteration). Thinning can be considered when computing pre-
dictions using samples obtained via MCMC is costly compared to running the
chain [4] and/or the autocorrelation function decreases slowly.

To validate the results from our MCMC, we typically compared inferences
made with our implementation to results obtained with another MCMC named
MMALA. MMALA is based on Langevin diffusion on a Riemannian Manifold
[5]. The timestep was chosen in such a manner that we obtained an acceptance
rate of about 50%. We could see no systematic difference between the posterior
distributions obtained with the different methods.
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Summary

Summary

Uncertainty Analysis in Systems Biology

Biochemical systems are complex systems comprised of several highly
interlinked components. Understanding such systems is essential in order to
predict their behavior under specific conditions and unravel the mechanisms
that drive multifactorial diseases. Computational models are often employed to
formalize our understanding in a testable manner. These are models based on
mathematical equations that can be solved using computer software. This thesis
pertains to models based on ordinary differential equations (ODEs). These
models contain parameters and state variables embedded in a system of
equations that describes their evolution in time. To simulate mathematical
models, parameter values are required. These parameter values are typically
obtained by calibrating models to reality using experimental data. Typically,
only a few of the system components are experimentally accessible and
measurements are performed with finite accuracy. Considering the complexity
of the models under investigation, this can result in large uncertainties in the
parameters and predictions.

Quantifying and reducing this uncertainty effectively is the main topic of
this thesis. Chapter 2 provides an introduction to the different methods for
uncertainty quantification available in literature. Subsequently, Chapter 3 de-
scribes a strategy which helps to avoid problems that can occur when perform-
ing uncertainty analysis on models comprised of ODEs. In Chapter 4, a method
is presented that uses the result from Chapter 3 to select new experiments in
such a way that specific uncertainties are reduced in an optimal manner. This is
achieved by exploiting relations between the different uncertainties which have
been implicitly imposed by the model topology and the available data. This
methodology allows the investigator to target specific model predictions and
select those experiments which optimally reduce the uncertainty. Additionally,
we can predict the effect of performing multiple experiments simultaneously. In
some cases, the topology of the network (and therefore also the model equations)
are also uncertain. In Chapter 5, a method is proposed which can be used to select
experiments in such a manner that the discriminatory power between different
models is maximized. The aim of these experiments is to enable the researcher to
select which model most closely resembles reality.

Chapter 6 details modeling of a system related to the production of triglyc-
erides in the liver. Here, some issues that arise when using literature data in a
Systems Biology approach are discussed. Chapter 7 shows an application of the
methodology presented in Chapter 4. Here parameters are no longer considered
fixed in time. The fact that certain interaction mechanisms between model com-
ponents are missing is accounted for by allowing parameters to vary in time. It
is shown that the methodology can also be used to successfully improve specific
predictions of interest. Additionally, an example of an inexpensive measurement
giving nearly as much information as a costly and invasive measurement is pro-
vided.
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Samenvatting

Nederlandse Samenvatting

Onzekerheidsanalyse in Systeem Biologie

Biochemische netwerken zijn complexe systemen bestaande uit meerdere stof-
fen die onderling interacties aangaan. Het begrijpen van dergelijke systemen en
het kunnen voorspellen van hun gedrag onder bepaalde omstandigheden is van
essentieel belang om multifactoriële ziektes te begrijpen. Kennis over een sys-
teem kan concreet en toetsbaar gemaakt worden met behulp van computationele
modellen. Dit zijn modellen gebaseerd op mathematische vergelijkingen die op-
gelost kunnen worden met behulp van een computer. Dit proefschrift behandelt
modellen die gebaseerd zijn op differentiaalvergelijkingen. Deze modellen be-
staan uit vergelijkingen en parameters die de verschillende stoffen in het model
aan elkaar relateren. Om deze modellen te simuleren zijn parameterwaarden
nodig. Deze parameterwaarden worden typisch verkregen door het model, met
behulp van metingen, te ijken op de realiteit. Niet alle componenten kunnen ech-
ter gemeten worden. Bovendien worden metingen altijd gedaan met een eindige
nauwkeurigheid. Deze feiten gecombineerd met de benodigde modelcomplexi-
teit zorgen ervoor dat er grote onzekerheden ontstaan in de voorspellingen die
door het model gemaakt kunnen worden. Deze onzekerheden kwantificeren en
zo efficiënt mogelijk reduceren zijn de hoofdonderwerpen van dit proefschrift.

Hoofdstuk 2 betreft een korte beschrijving van de verschillende methodes
voor onzekerheidsanalyse in de literatuur. In Hoofdstuk 3 volgt een strategie
waarmee bepaalde problemen die zich bij de individuele methodes kunnen voor-
doen voorkomen kunnen worden. Het resultaat hiervan is een distributie van
parameters die hun onzekerheid weerspiegelt en gebruikt kan worden om mo-
delvoorspellingen te genereren. In Hoofdstuk 4 wordt gebruik gemaakt van
deze distributies om nieuwe experimenten te selecteren. Deze methode bepaalt
welke experimenten optimaal zijn om selectief onzekerheden te reduceren. Hier-
bij wordt gebruik gemaakt van de relaties tussen de onzekerheden van de ver-
schillende modelvoorspellingen die door de data en het model zijn opgelegd.
Een voordeel is dat deze niet beperkt zijn tot het voorspellen van enkel concen-
traties of parameters. Ook is het mogelijk om het combinatoriële voordeel van
meerdere experimenten in kaart te brengen. Vaak bestaan er meerdere hypothe-
ses (modellen) over hoe het systeem werkt. In Hoofdstuk 5 wordt een methode
voorgesteld die voorspellingen aanwijst die het onderscheidingsvermogen tus-
sen verschillende modellen zo groot mogelijk maakt. Het vervolgens uitvoeren
van deze experimenten dient de onderzoeker dan in staat te stellen om het meest
geschikte model te kiezen.

Hoofdstuk 6 betreft een model van de productie van triglyceriden in de lever.
Hierbij wordt gedemonstreerd wat voor problemen zich kunnen voordoen bij het
gebruik van literatuur data. Hoofdstuk 7 betreft een applicatie van de methode
gepresenteerd in Hoofdstuk 4. Hierbij wordt rekening gehouden met het feit dat
bepaalde interacties tussen componenten in het model nog niet expliciet gemo-
delleerd kunnen worden. Ondanks grote onzekerheden elders in het model, kan
het specifiek richten op bepaalde voorspellingen toch leiden tot grote verbeterin-
gen. In deze studie blijkt een relatief eenvoudige meting net zo nuttig te zijn als
een kostbare invasieve meting.
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Na al dat schrijfwerk ben ik nu toch eindelijk bezig met de laatste paar pagina’s.
Tijd om d’r een einde aan te breien en toch eens de mensen te bedanken zonder
wie dit proefschrift er niet geweest zou zijn.

Peter, bedankt dat je mij de middelen en vrijheid hebt gegeven om dit
proefschrift tot iets eigens te maken. Het was niet altijd even makkelijk, en ik
heb me menig moment afgevraagd of wat meer sturing niet fijn of nodig zou
zijn. Maar uiteindelijk is het iedere keer toch gelukt om weer iets nieuws te
verzinnen. Achteraf gezien was de gegeven vrijheid, met slechts hier en daar
een kritische vraag, duwtje of opmerking, misschien toch wat ik nodig had.
Bedankt voor je vertrouwen en interesse in m’n werk.

Natal, onze gesprekken zijn vaak nuttig geweest voor mij om dingen op een rij
te zetten. Je bent goed in het zoeken naar positieve aspecten van bepaalde
aanpakken en werk zo te presenteren dat deze aspecten bijzonder in het
daglicht gezet worden. Ook kijk ik met een glimlach terug naar de uitstapjes
naar de verschillende congressen en workshops.

Jens Timmer, Mark Girolami and Klaas Nicolay, I am honored that you agreed
to be members of the core-committee for my PhD defense. Thank you for your
interest in my work and for thoroughly reading my dissertation.

Christian, ik heb altijd graag met je samengewerkt. Je bent vaak voor mij een
klankbord geweest, zowel voor nieuwe ideëen als andere niet-wetenschap
gerelateerde zaken. Ook was je goed in het ietwat nuanceren van mijn af en toe
wat cynische blik op ’het veld’. Zowel je werk als je persoonlijkheid zijn
behoorlijk van invloed geweest op mijn doen en laten tijdens deze promotie en
ik heb vaak met je moeten lachen. Thanks man!

Andere Joep, je vaak praktische insteek heeft me vaak geholpen in te zien dat de
toepassing van bepaalde technieken niet vergeten moet worden. Een techniek
kan nog zo mooi zijn, als het gebruik te ingewikkeld is gaat niemand deze
gebruiken. Rik, ook al waren we het niet altijd met elkaar eens, ik heb altijd
graag met je gepraat. Zowel on- als off-topic. Fianne, jij ook bedankt en succes
met het afmaken van het boekje (al heb ik er het volste vertrouwen in dat dit
lukt!). Alon, thanks for keeping me enthused (and well informed) about
running! Ceylan, Huili, I’ve always enjoyed discussing cultural differences
between our countries and mispronouncing both your last names. Doing a PhD
is sometimes stressful (funfun!) and all of you have kept me relatively sane
during these past 4+ years. The drinks with pizza and random banter on our
little island of PhD students will not be forgotten quickly.

Jeroen, als ik aan enthousiaste wetenschappers denk, denk ik meteen aan jou.
Hierdoor maakte je af en toe wat grote sprongen, en twijfelde ik hier en daar aan
de realiseerbaarheid van een aantal van je ideëen. Desondanks, hebben zowel je
wetenschappelijke enthousiasme als je kijk op het leven een ontzettend
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motiverende invloed op mij gehad. Kalyan, thanks for an awesome time during
my internship in the USA. Your hospitality made me feel very welcome. Next
time I am in the US, we’ll have to go for some injera with honey wine again!

Huub en Koen, jullie waren dan wellicht niet mijn promotie- of
afstudeerbegeleiders, stiekem heb ik altijd veel van jullie geleerd. Vooral de
helderheid waarmee jullie zaken uitlegden en de duidelijkheid waarmee jullie
aangaven tot waar jullie kennis reikte waren fijn. Of course, for the entire
BIOMIM crew, thanks for the good times! The lab outings, the conversations at
the lunchtable and other things that made my time here more enjoyable.

Steve, Sophie, Hakim, thanks for listening to me grumble every now and then!
It’s much appreciated.

Tommy, en ook de rest van de massiv kru, jullie ook bedankt natuurlijk. De
menige gare avondjes en verschillende parties heb ik altijd erg gewaardeerd.
Zal ook zeker nog wel vaker op bezoek komen in Helden city! En Tommy, ik
verwacht wel de eerste beta tester van je spel te worden he!

Pap, mam, ik wil jullie bedanken voor jullie goede zorg, raad en steun. Zowel
voor, tijdens, als (hoop ik nog lang) na mijn promotie. Zonder jullie had ik hier
niet gestaan. Het is niet altijd even makkelijk geweest en gedurende het
afronden van dit werk heb ik waarschijnlijk ook jullie geduld vaak op de proef
gesteld. Desondanks hebben jullie me altijd gesteund. Het is bijzonder fijn om
te weten dat ik altijd op jullie kan rekenen en dat jullie altijd voor me klaar
staan. En mam, Duitsland is echt zo ver niet hoor!

Thijs, Melanie, Cathelijne en Stefan, bedankt dat jullie er ook altijd voor me
waren.

En tenslotte, Rachel, ik ga dit toch in het Nederlands doen, aangezien ik er het
volste vertrouwen in heb dat je Nederlands tegen deze tijd zo goed is dat je dit
zelf kunt lezen. Ik zou je graag vertellen hoeveel je voor mij betekent, maar dit
kan ik nauwelijks in woorden uitdrukken. Je hebt mij een kant van het leven
laten zien die mij bijzonder dierbaar is. Ik kijk altijd weer uit naar die
momenten waarop ik weer van je lieve glimlach mag genieten. Je
onuitputtelijke positieve instelling en vrolijk karakter zijn bijzonder en ik hoop
samen met jou nog heel wat jaartjes door te mogen brengen.

Oh, en Melanie? Bedankt voor de kaft he!

Groetjes,
Joep.
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